Науменко Л. К.
Шрифт:
Все эти геометрические объекты или «вещи», как выражается Гильберт, имеют лишь относительное значение, имеют смысл лишь постольку, поскольку они рассматриваются в систематической связи друг с другом, описывающей внутреннее строение геометрических свойств реальности. Совершенно бессмысленно ставить вопрос об их объективном значении вне этой системы отношений, так как объективным значением обладает лишь вся система в целом, но никак не ее отдельные элементы.
Аксиоматика поэтому вовсе не открывает путь в некое царство хрупких геометрических объектов, доступных лишь умозрению, отличных от физических, чувственно постигаемых объектов. Аксиоматика позволяет раскрыть рациональную форму зависимости эмпирически данных свойств, состоящую (как уже было показано выше) в установлении отношений между однородными фактами.
С помощью аксиоматики объекты теории не задаются, но лишь определяется форма их рационального постижения, способ анализа опытных данных. Этот способ, в котором выражается внутреннее строение исследуемого свойства, должен оставаться неизменным на протяжении всего исследования, что и является причиной дедуктивного построения математических теорий.
Область внутренних отношений предмета математической теории оказывается доступной только через аксиоматику, которая поэтому играет такую большую роль в математике. «Можно сказать, что количественные отношения суть чистые отношения, сохраняющие от конкретной действительности, от которой они отвлечены, только то, что предусмотрено в их определении. Из этих общих свойств количественных отношений легко объясняются основные особенности математики как науки о такого рода отношениях. Ее по преимуществу дедуктивный характер объясняется тем, что все свойства чистых отношений должны содержаться в самом их определении» [145] .
145
Большая Советская энциклопедия, т. 26, с. 476.
Таким образом, объекты математики должны быть выделены, отвлечены от других объектов в реальности и рассмотрены в чистом виде. Для того чтобы определить количественные свойства вещей в явной, расчлененной, эксплицитной понятийной форме, опытные данные необходимо подвергнуть анализу, изолировать количественные свойства и представить их в чистом виде, расчленить имплицитное и установить внутри него зависимости и отношения, выявить внутренние для данного свойства связи и закономерности, т.е. сделать то, что делается, например, при выявлении аксиом математической теории и ее основных понятий.
«Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира, стало быть – весьма реальный материал. Тот факт, что этот материал принимает чрезвычайно абстрактную форму, может лишь слабо затушевать его происхождение из внешнего мира. Но чтобы быть в состоянии исследовать эти формы и отношения в чистом виде, необходимо совершенно отделить их от их содержания, оставить это последнее в стороне, как нечто безразличное» [146] .
146
Энгельс Ф. Анти-Дюринг, с. 37.
Или: «Безразличие количественных соотношений и пространственных форм объективной реальности по отношению к качественному содержанию представляет собой объективный факт, составляющий фундамент математики. Предмет математики составляют те формы и отношения действительности, которые объективно обладают такой степенью безразличия к содержанию, что могут быть от него полностью отвлечены и определены в общем виде с такой ясностью и точностью, с сохранением такого богатства связей, чтобы служить основанием для чисто логического развития теории» [147] .
147
Математика, ее содержание, методы и значение, с. 68.
Это отвлечение и составляет условие монистического познания в математике.
Между тем, при отвлечении от качественного содержания реальных объектов их количественная определенность становится совершенно неопределенной, она как бы повисает в воздухе. Для того чтобы математические абстракции приобрели «ясность», «точность» и «богатство связей», которые действительно отличают математику, необходимо установить некоторые внутренние различия для «безразличного», внутренние отношения, которые именно математически сообщили бы количественным понятиям адекватную определенность.
Иными словами, если количественные понятия употребляются для измерения качественных объектов, то сама количественная область может быть «измерена» лишь собственным, внутренним масштабом. Этим единственным путем для математики оказывается путь анализа отношений количеств. Содержание математических абстракций определяется исключительно их отношением к другим таким же количественным абстракциям. Эти закономерные отношения и составляют внутренний, логический нерв математики, организующий количественные объекты во внутренне спаянную систему, во всех своих элементах поддерживающую самое себя.
Задача математики и состоит в том, чтобы изыскать такие средства, выработать такие абстракции, отношения которых внутренним образом описывали бы закономерности количественной области, т.е. установить различия, внутренние для количества как «безразличной» по отношению к содержанию явлений определенности, как гомогенной, чисто количественной предметной области.
В ее задачу, таким образом, не входит чисто рациональное, априорное выведение количеств из внутренней логики «чистого разума» (такое выведение совершенно невозможно), но изыскание средств рационального, логического, понятийного выражения эмпирически данных количественных определений, т.е. выработка системы абстракций, отношение которых позволяет раскрыть внутренние закономерности количественной области. Через эти отношения чистых количеств область количественных понятий приобретает собственный центр, собственный смысл, собственную логику и относительно самодовлеющее значение.