Вход/Регистрация
Maple 9.5/10 в математике, физике и образовании
вернуться

Дьяконов Владимир Павлович

Шрифт:

> w := <r,theta>;

w: = r er + θ e0

> attributes(w);

coords = polar

Аналогично можно задать вектор в сферической системе координат:

> SetCoordinates(spherical[r,phi,theta]);

sphericalr,φ,θ

> F := VectorField(<r,0,0>);

F.= rēr

> attributes(F);

vectorfield, coords = sphericalr,φ,θ

Можно также сменить формат представления вектора и выполнить с ним некоторые простейшие векторные операции:

> BasisForrnat(false);

true

> v := <a,b,c>;

> BasisFormat(true);

false

> v;

aer + bеφ +ceθ

> SetCoordinates(polar);

polar

> MapToBasis(<r,theta>, 'cartesian');

r cos(θ)ex + r sin(θ)ey

> SetCoordinates(spherical);

spherical

> MapToBasis(<r,phi,theta>, 'cartesian');

r sin(φ)cos(θ)ex + r sin(φ)sin(θ)ey + r cos(φ)еz

> SetCoordinates(spherical[r,phi,theta]);

sphericalr,φ,θ

> MapToBasis(VectorField(<r,0,0>), 'cartesian'[x,y,z]);

хēх + yēy + zēz

Пакет VectorCalculus предусматривает возможность задания новой системы координат с помощью команды:

AddCoordinates(newsys, eqns, owrite)

где newsys — спецификация новой системы координат в виде symbol[name, name, …]; eqns — соотношения между координатами новой системы и прямоугольной системы координат, представленные в виде list(algebraic); owrite — заданное опционально равенство.

4.11.3. Основные операции с векторами

В данном пакете переопределены некоторые основные операции над векторами. Прежде всего, это операции сложения (+) и скалярного умножения (*), которые поясняются следующими примерами (файл vop) :

> SetCoordinates(cartesian);

cartesian

> <x,y,z> + m*<x1,y1,f1>;

(x + m x1)ex + (у + m y1)ey + (z + m f1)ez

> (<r(a+h),s(a+h),t(a+h)> - <r(a),s(a),t (a)>) / h;

> limit(%,h=0);

D(r)(a)ex + D(s)(a)ey + D(t)(a)ez

Обратите внимание на вычисление предела в конце этих примеров. Далее можно отметить операцию точечного умножения, которая иллюстрируется следующими вполне очевидными примерами:

> <a,b> . <c,d>;

ac+bd

> SetCoordinates(polar);

polar

> <a,b> . <c,d>;

a cos(b) c cos(d) +a sin(b) c sin(d)

> combine(%,trig);

a c cos(b-d)

> SetCoordinates(cartesian[x,y,z]);

cartesianx, y, z

> Del . VectorField(<х^2,у^2,z^2>);

2x +2y + 2z

> Del . Del;

VectorCalculus: - Laplasian

> (Del . Del) (f(x,y,z));

> L := VectorField( <x,y,z> ) . Del;

L:= e→vectorCalculus:-`.`(Vector[column](3,[...],datatype = anything, storage = rectangular, order = Fortran_order, attributes = [vectorfield, coords = cartesian[x,y,z]], shape = [],)VectorCalculus:-Del(e))

> L(f(x,y,z));

Определена также операция кросс-умножения:

  • Читать дальше
  • 1
  • ...
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: