Вход/Регистрация
Maple 9.5/10 в математике, физике и образовании
вернуться

Дьяконов Владимир Павлович

Шрифт:

> <a,b,c> &х <d,e,f>;

(bf - ce)ex + (cd - af)ey +(ae - bd)ez

> SetCoordinates(cylindrical);

cylindrical

> <a,b,c> &x <d,e,f>;

> SetCoordinates(cartesian[x,y,2]);

cartesianx, y, z

> Del &x VectorField( <y,-x,z> );

(-2)ēz

> L := VectorField(<x,y,z>) &x Del;

L: = e→vectorCalculus:-`&x`(Vector[column](3,[...],datatype = anything, storage = rectangular, order = Fortran_order, attributes = [vectorfield, coords = cartesian[x, y,z]], shape = []), VectorCalculus:-Gradient(e))

> L(f(x,y,2));

> L := Del &x Del;

L := (VectorCalculus:-Curl) @ (VectorCalculus:-Gradient)

> L(f(x,y,z));

0ēx

4.11.4. Операции с кривыми

В пакете векторных операций определен ряд типовых операций с кривыми. Ниже представлено задание эллиптической кривой и вычисление в аналитической форме нормали и радиуса кривизны (файл vopcurves):

> SetCoordinates(cartesian);

cartesian

> assume(t::real);

> ell := <2*cos(t),sin(t)>;

ell := 2 cos(t)ex + sin(t)ey

> nv := simplify(PrincipalNormal(ell,t));

> len := simplify(LinearAlgebra:-Norm(nv, 2));

> r := simplify(RadiusOfCurvature(ell));

Теперь можно представить саму кривую (эллипс) и ее эволюту (рис. 4.39):

> ev := simplify(ell + r * nv / len);

> plot([[ell[1], ell[2], t=0..2*Pi], [ev[1], ev[2], t=0..2*Pi]]);

Рис. 4.39. Графики кривой — эллипса и ее эволюты

Нетрудно заметить, что для эллипса эволюта представляет собой удлиненную астроиду.

Для вычисления кривизны кривой С используется функция Curvature(C, t) в которой параметр t может и отсутствовать:

> Curvature(<cos(t),t,sin(t)>, t);

> с := Curvature(t -> <t,t^2,t^4>):

> simplify(c(t)) assuming t::real;

> SetCoordinates('polar');

polar

> Curvature(<exp(-t^2), t>):

> simplify(%) assuming t::real;

4.11.5. Интегрирование в пакете VectorCalculus

В аспекте практических приложений векторного анализа и теории поля особый интерес представляют приложения интегрирования пакете VectorCalculus. Так, видоизмененная функция int(f, dom) задает вычисление интеграла от функции f по области dom, например (файл vecint):

> restart:with(VectorCalculus):

> int(х^2+у^2, [x,y] = Circle(<0,1>, r));

> int(sin(х)*cos(у)*tan(z), [x,y,z] = Parallelepiped(0..Pi, 0..Pi/3, 0..Pi/4));

½√3 ln(2)

Функция PathInt(f, dom) вычисляет интеграл пути для функции f с Rn до R:

> PathInt(х^2, [х,y] = Line(<0,0>, <1,2>));

> PathInt(х^2+y^2, [х,y] = Circle(<0,0>, 3/2));

> PathInt(1, [х,y] = Ellipse(х^2+y^2/2-1));

Другая функция LineInt(F, dom), где F — вектор или процедура задания векторного поля, dom — параметр, характеризующий направление интегрирования, задает вычисление линейного интеграла в пространстве Rn:

> SetCoordinates(cartesian[х,y]);

cartesianx, у

> LineInt(VectorField(<х,y>), Line(<0,1>, <2,-5>));

  • Читать дальше
  • 1
  • ...
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: