Дьяконов Владимир Павлович
Шрифт:
Поскольку эти суммы явно сходятся, то можно считать применение сумм Римана приемлемым и принять, что площадь данной поверхности приближенно равна:
4.11.9. Вычисление поверхностных интегралов
Приведенный выше пример иллюстрирует трудности вычислений поверхностных интегралов. Разумеется, далеко не всегда Maple требует специальных подходов к вычислению подобных интегралов и многие из них благополучно вычисляются.
Для этого используется функция:
где f — алгебраическое выражение, задающее интегрируемую зависимость, dom — спецификация поверхности в виде list(name)=surface и inert — имя, задаваемое как опция.
Примеры применения данной функции представлены ниже (файл surint):
Глава 5
Анализ функциональных зависимостей и обработка данных
Аналитические функции и степенные многочлены (полиномы) широко используются в математике и физике. В этой главе описана работа с функциями и полиномами, включающая в себя традиционный анализ функций, выявляющий их особенности и обеспечивающий различные преобразования функций, вычисление и преобразование полиномов в том числе ортогональных и техника приближения (аппроксимации) функций и табличных данных полиномами и сплайнами. Все эти вопросы имеют исключительно важное значение в практике научно-технических расчетов.
5.1. Анализ функциональных зависимостей
5.1.1. Понятие о функциональных зависимостях
Говорят, что y(x) есть функция, если известно правило, согласно которому каждому значению аргумента x соответствует некоторое значение у. Мы уже сталкивались с элементарными и специальными математическими функциями, которые имеют свои уникальные имена. Возможны и функции двух и более переменных, например функции Бесселя разного порядка.
Здесь мы под функциональной зависимостью будем понимать не только зависимости, заданные отдельными элементарными или специальными функциями, но и любые зависимости какой либо величины от ряда других величин — переменных. Такие выражения могут содержать ряд элементарных или специальных математических функций. Например, sin(x) и cos(x) это просто элементарные функции, а f(х)=2*sin(x)*cos(x) это уже функциональная зависимость f от х. Любое математическое выражение, содержащее переменные х, y, z, … можно рассматривать как функциональную зависимость f(x, y, z, …) от этих переменных.
Функциональная зависимость или функция f(х) даже от одной переменной может быть достаточно сложной, содержать корни (значения x при которых f(х)=0), полюса (значения х при которых f(х)→∞), максимумы и минимумы, разрывы, асимптотические значения, точки перегиба и т.д. Часто эти особенности видны на графике зависимости f(х), но анализ функциональной зависимости предполагает, что эти особенности могут быть точно идентифицированы и определены по математическому выражению, представляющему зависимость. Например, поиск корней сводится к решению уравнения f(х)=0 в заданном интервале, поиск экстремумов полагает нахождение значений x в точках экстремумов и значений f(х) в них и т.д.