Вход/Регистрация
Maple 9.5/10 в математике, физике и образовании
вернуться

Дьяконов Владимир Павлович

Шрифт:
14

> LineInt(VectorField(<y,-х>), Circlet<0,0>, r));

– 2 r² π

> LineInt(VectorField(<y,-х>), Ellipse(х^2/4+y^2/9-1));

– 12π

> LineInt(VectorField(<y,-х>), Arc(Ellipse(х^2/4+у^2/9-1), 0, Pi/2));

– 3π

Функция ArcLength(C,dom) задает вычисление длины дуги С по известному интегральному выражению для нее:

> ArcLength(<r*cos(t),r*sin(t)>, t=0..Pi) assuming r>0;

πr

> ArcLength(t -> <t,t^2>, 0..2);

√17-¼ln(-4+√17)

> evalf(%);

4.646783762

Рекомендуется просмотреть различные варианты задания области интегрирования dom в справке по этому пакету.

4.11.6. Задание матриц специального типа

Пакет VectorCalculus позволяет для заданной функции f задавать несколько матриц специального вида, которые часто используются при решении задач теории поля:

Hessian(f, t) — создание матрицы гессиана;

Jacobian(f, v, det) — создание матрицы якобиана;

Wronskian(f, t) — создание матрицы вронскиана.

Примеры задания таких матриц приведены ниже (файл vecmatrix):

> Hessian(ехр(х*y), [х,y]);

> Hessian(а/(х^2+y^2+z^2), [х, y, z]);

> Н := unapply(%, [a,x,y,z]):

> Н(1/2, 0.3, 0.7, 0.1);

> Jacobian([r*cos(t), r*sin(t)], [r,t]);

> Jacobian([r*cos(t), r*sin(t)], [r,t], 'determinant');

> Wronskian([exp(t),ln(t),sin(t)], t);

> Wronskian([t, t^2, t^3], t)

4.11.7. Функции теории поля

К основным функциям теории поля относятся:

Curl(F) — вычисляет вихрь векторного поля в R³;

Divergence(F) — вычисляет дивергенцию векторного поля;

Flux(f, dom) — вычисляет поток векторного поля в R³;

Gradient(f, с) — вычисляет градиент функции f в пространстве от Rn до R;

Del(f, с) и Nabla(f, с) — векторные дифференциальные операторы;

Laplacian(f, с) или Laplacian(F) — вычисляет лапласиан функции f или векторного определения (процедуры) F;

ScalarPotential(v) — вычисляет скалярный потенциал векторного поля;

Torsion(C, t) — вычисляет торсион в R³;

VectorPotential(v) — вычисляет векторный потенциал в R³;

Довольно громоздкие определения этих функций, основанные на использовании криволинейных и поверхностных интегралов, имеются в учебной литературе. Не приводя их, ограничимся приведенными ниже примерами применение указанных выше функций (файл vecft):

> restart:with(VectorCalculus): SetCoordinates('cartesian'[x,y,z]);

cartesianx, у, z

> F := VectorField( <-y,x,0> );

F:=-yēx +хēу

> Curl(F);

2ēz

> Del &x F;

2ēz

> Nabla &x F;

2ē

> CrossProduct(Del, F);

2ēz

> F := VectorField(<х^2,y^2,z^2>);

F:=-x²ēх + y²ēу + z²ēz

> Divergence(F);

2х + 2у + 2z

> Flux(VectorField(<x,y,z>, cartesian[x,y,z]), Sphere(<0,0,0>, r));

4r³ π

> Gradient(х^3/3+у^2, [x,y]);

x²ēx + 2yēу
  • Читать дальше
  • 1
  • ...
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: