Шрифт:
Левая часть вычисляется с помощью рассмотренного выше фокуса с делением как 0,8 + 0,4 i. Правую часть можно упростить, используя тот факт, что i 2 = -1:
0,8 + 0,4 i= 1 + 1/ 2 i– 1/ 4+ 1/ 8 i– 1/ 16+ 1/ 32 i– 1/ 64+ …Можно пройти правую часть этой формулы на комплексной плоскости. Идея видна из рисунка 11.3 . Начнем из точки 1 (которая, разумеется, расположена на вещественной оси). Оттуда идем на север, что соответствует прибавлению 1/ 2 i. Затем на запад на 1/ 4потом на юг в соответствии с вычитанием 1/ 8 iи т.д. Получается спираль, замыкающаяся на комплексном числе 0,8 + 0,4 i. Вот вам анализ в действии — бесконечный ряд сходится к этому пределу.
Рисунок 11.3.Анализ на комплексной плоскости.
Заметим, что при переходе к комплексным числам мы потеряли простоту одного измерения, но зато приобрели некоторые преимущества наглядности. При наличии в нашем распоряжении двух измерений можно, как мы только что это и делали, демонстрировать математические результаты в виде замечательных наглядных образов и картинок. В этом до известной степени и состоит привлекательность комплексного анализа (для меня, во всяком случае). В главе 13 мы сможем увидеть дзета-функцию Римана (и саму великую Гипотезу!), выраженную в виде изящных узоров на комплексной плоскости.
Глава 12. Восьмая проблема Гильберта
Давиду Гильберту было 38 лет, когда утром в среду 8 августа 1900 года он выходил к трибуне 2-го международного конгресса математиков. Сын судьи из столицы Восточной Пруссии Кенигсберга [94] , он прославился как математик за 12 лет до того, решив проблему Гордана в теории алгебраических инвариантов.
То был не просто succ`es d'estime, но до некоторой степени и succ`es de scandale. [95] Гильберт смог доказать существование объектов, но при этом не сконструировал их, не предложил даже метода для их построения. Математики говорят о таком как о «доказательстве существования». В своих лекциях Гильберт использовал следующий бытовой пример: «Среди вас имеется по крайней мере один студент — назовем его X, — в отношении которого верно следующее утверждение: ни у одного другого студента в аудитории нет на голове большего числа волос, чем у X. Кто этот студент? Этого мы никогда не узнаем; но в его существовании мы можем быть абсолютно уверены». Доказательства существования довольно распространены в современной математике и в наше время не вызывают особых возражений. Другое дело — Германия 1888 года. Лишь за год до того Леопольд Кронеккер, уважаемый член Берлинской академии наук, выступил с манифестом «О концепции числа», в котором сделал попытку изгнать из математики то, что он считал ненужным уровнем абстракции — все, по его мнению, что нельзя вывести из целых чисел за конечное число шагов. Гордан сам отозвался о гильбертовом доказательстве существования фразой, ставшей знаменитой: «Это не математика. Это теология».
94
Гильберт родился в 1862 г. в Велау, ныне поселок Знаменск Калининградской области. (Примеч. перев.)
95
Успех, приносящий уважение; скандальный успех (франц). (Примеч. перев.)
Однако в целом математики признали обоснованность предложенного Гильбертом доказательства. Гильберт вслед за тем продолжил важную работу по алгебраической теории чисел и основаниям геометрии. Он дал новые блестящие доказательства — обапомещающиеся на трех с половиной страницах — трансцендентности чисел и e. (Когда в 1882 году фон Линдеманн впервые доказал трансцендентность числа , вышеупомянутый Кронеккер [96] похвалил его за элегантность доказательства, но добавил, что оно ничего не доказывает, ибо трансцендентные числа не существуют!) В 1895 году Гильберт получил место профессора в Геттингене, где и оставался до своего ухода на пенсию в 1930 году.
96
В мои намерения вовсе не входит выставлять Кронеккера никчемным чудаком. Тезис, который он защищал, хоть я и не согласен с ним, представляет собой весьма тонкий и глубокий математический вопрос. По поводу вдохновенной защиты Кронеккера см. статью Хэролда Эдвардса в: Mathematica Intelligencer.Vol. 9. № 1. Кронеккер, по словам профессора Эдвардса, был человек «вполне разумный и рассудительный, но едкий».
Слова «Гильберт» и «Геттинген» связаны друг с другом в головах современных математиков столь же тесно, как в других сферах связаны «Джойс» и «Дублин», «Джонсон» и «Лондон». [97] Гильберт и Геттинген играли ведущую роль в математике в течение первой трети XX века — не просто в немецкой математике, а в математике как таковой. Швейцарский физик Пауль Шеррер, студентом приехав в Геттинген в 1913 году, сообщал об обнаружении там «интеллектуальной жизни непревзойденной интенсивности». Необычайно большая доля видных математиков и физиков первой половины столетия училась или в Геттингене, или под руководством кого-то, кто сам там учился.
97
Сэмюэл Джонсон(доктор Джонсон, или просто Хан) — английский литератор и филолог XVIII в., прославившийся работоспособностью, широтой интересов и любовью к лондонским кофейням, заменявшим ему рабочий кабинет. (Примеч. перев.)
Относительно личности Гильберта до нас доходят несколько разнородные впечатления. Будучи вполне светским человеком, он был увлеченным танцором и пользовался популярностью как преподаватель. Не чуждался он и погони за юбками — в той весьма ограниченной степени, какая вообще была возможна в провинциальной Германии времен Вильгельма. (Впрочем, нельзя сказать, чтобы эта погоня заводила его достаточно далеко.) В нем была бунтарская жилка: похоже, он тяготился жесткой расписанностью университетской жизни, обычаями, правилами и общественными установлениями. Одна профессорская жена пришла в ужас, узнав, что Гильберта видели в дальней комнате одного из городских ресторанов, играющим в бильярд с младшими преподавателями. Когда во время Первой мировой войны университет отказался предоставить Эмми Нетер постоянную преподавательскую позицию на том основании, что она женщина [98] , Гильберт просто-напросто объявил, что прочитает курс лекций, а затем предоставил Нетер их чтение. Он, по-видимому, был мягким экзаменатором, всегда готовым истолковать сомнение в пользу экзаменуемого.
98
См. однако, высказывание, приписываемое Ландау в главе 14.iv. (Примеч. перев.)
И все же трудно избавиться от впечатления, что Гильберт был человеком, которому нелегко давалась терпимость к глупцам — категории, к которой он относил весьма значительную часть человечества. Для Гильберта это было тем более печально, что его единственный ребенок, Франц, страдал от серьезного умственного расстройства. Не в состоянии ни изучить как следует какой бы то ни было предмет, ни постоянно работать на одной и той же работе, Франц страдал еще и периодическими приступами паранойи, после которых в течение некоторого времени его приходилось содержать в лечебнице для душевнобольных. Зафиксировано высказывание Гильберта во время первого из этих заточений: «С этого момента мне придется считать, что у меня нет сына».