Ваховский Евгений Борисович
Шрифт:
Второе требование в этом определении нельзя заменить условием: «остальные грани — параллелограммы», так как иначе пришлось бы отнести к призмам многогранник, составленный из двух равных наклонных параллелепипедов, симметричных относительно плоскости их общего основания, крест, образованный из пяти равных кубиков и m. n.
Если боковые ребра (грани) пирамиды одинаково наклонены к плоскости основания, то высота пирамиды проецируется в центр описанной вокруг основания (вписанной в основание) окружности.
Если боковые ребра и грани пирамиды одинаково наклонены к плоскости основания, то пирамида правильная.
Площадь ортогональной проекции многоугольника на плоскость P равна произведению площади этого многоугольника на косинус угла между плоскостью многоугольника и плоскостью P.
Если все боковые грани пирамиды наклонены к основанию под углом , то Sоснования = Sбоковой поверхности ·cos .
Треугольную пирамиду называют тетраэдром.
Правильным тетраэдром называется тетраэдр, у которого все ребра равны.
В задачах рассматриваются только прямые круговые конусы и цилиндры.
Конус (цилиндр) называется равносторонним, если его осевое сечение есть правильный треугольник (квадрат).
3.1. Через точку, лежащую на ребре двугранного угла (0 < < /2), проходят два луча, расположенных в различных полуплоскостях его. Один из этих лучей перпендикулярен к ребру, а другой образует с ребром острый угол . Найдите угол между данными лучами.
3.2. Гипотенуза прямоугольного треугольника лежит в некоторой плоскости P, а катеты составляют с этой плоскостью углы и . Определите угол между плоскостью P и плоскостью треугольника.
3.3. Стороны угла наклонены к плоскости P под углами и . Найдите косинус угла, являющегося проекцией угла на плоскость P.
3.4. Даны четыре скрещивающиеся прямые: а, b, с и d. Постройте прямую, параллельную а и одинаково удаленную от остальных трех прямых.
3.5. Равносторонний треугольник ABC со стороной, равной а, лежит на плоскости P. На перпендикуляре, восставленном из точки А к плоскости P, отложен отрезок АS = а. Найдите тангенс острого угла между прямыми AB и AC.
3.6. В пространстве даны два луча Ax и By, не лежащие в одной плоскости и образующие между собой угол 90°; AB — их общий перпендикуляр. На лучах Ax и By взяты точки: M на Ax и P на By, такие, что 2АМ · ВР = AB^2. Докажите, что расстояние от середины O отрезка AB до прямой MP равно 1/2AB.
3.7. Докажите, что четырехгранный угол можно пересечь плоскостью так, чтобы в сечении получился параллелограмм.
3.8. На плоскости P лежит правильный треугольник ABC со стороной а. Из точек С и В восставлены перпендикуляры к плоскости P и на них отложены отрезки СЕ = а2 и BD = a/2 (с одной стороны от плоскости P). Найдите площадь треугольника DEA и косинус угла между плоскостью P и плоскостью этого треугольника.
3.9. Найдите объем пирамиды, в основании которой лежит правильный треугольник со стороной а, если двугранные углы между плоскостью основания и боковыми гранями равны , и .
3.10. Основанием пирамиды DABC служит равнобедренный треугольник ABC с площадью S и основанием AB = а. Две боковые грани пирамиды, опирающиеся на равные стороны основания, имеют при вершине пирамиды прямые углы. Найдите угол, образованный третьей боковой гранью пирамиды и плоскостью основания, если объем пирамиды равен V.
3.11. В правильной треугольной пирамиде площадь основания равна 3, а угол бокового ребра с плоскостью основания в четыре раза меньше плоского угла при вершине. Найдите площадь боковой поверхности.
3.12. В тетраэдр вписан другой тетраэдр так, что его вершины лежат в точках пересечения медиан граней первого тетраэдра. Найдите отношение объемов тетраэдров.
3.13. Шар касается всех боковых граней пирамиды в точках пересечения их медиан, причем центр шара находится внутри трехгранного угла, образованного боковыми гранями пирамиды. Докажите, что пирамида правильная.