Ваховский Евгений Борисович
Шрифт:
3.14. Докажите, что в усеченной пирамиде сторона квадрата, равновеликого площади сечения пирамиды, проходящего через середину высоты пирамиды параллельно ее основанию, равна среднему арифметическому сторон квадратов, равновеликих основаниям пирамиды.
3.15. В пирамиде ABCD дано BC = а, CA = b, AB = с, DA = а1, DB = b1, DC = с1. Найдите косинус острого угла между скрещивающимися ребрами AD и BC этой пирамиды.
3.16. Плоскость, проходящая через одно из ребер правильного тетраэдра, делит его объем в отношении 3 : 5. Найдите тангенсы углов и , на которые эта плоскость делит двугранный угол тетраэдра.
3.17. В правильной четырехугольной пирамиде двугранный угол при основании равен . Через ребро основания проведена внутри пирамиды плоскость, составляющая с основанием угол . В каком отношении она делит площади тех боковых граней, которые она рассекает на два треугольника?
3.18. Высота треугольной пирамиды ABCD, опущенная из вершины D, проходит через точку пересечения высот треугольника ABC. Кроме того, известно, что DB = b, DC = с, BDC = 90°. Найдите отношение площадей граней ADB и ADC.
3.19. В треугольной пирамиде SABC все плоские углы трехгранных углов с вершинами в точках A и B равны , AB = а. Определите объем пирамиды.
3.20. Две грани треугольной пирамиды — равнобедренные прямоугольные треугольники с общей гипотенузой AB. Двугранный угол при AB равен . Найдите двугранный угол, у которого ребро есть катет.
3.21. В треугольной пирамиде SABC два плоских угла ASB и BSC при вершине S равны , а третий плоский угол ASC равен /2. Ребро AS перпендикулярно к плоскости основания ABC. Найдите угол BAC.
3.22. В тетраэдре ABCD ребро AB = 6, ребро CD = 8, а остальные ребра равны 74. Найдите радиус R описанного шара.
3.23. В правильной треугольной пирамиде двугранный угол между боковыми гранями равен . Найдите высоту данной пирамиды, если расстояние от основания высоты до бокового ребра равно а. Ответ приведите к виду, удобному для логарифмирования.
3.24. В основании треугольной пирамиды лежит правильный треугольник со стороной а. Одна боковая грань пирамиды представляет собой равнобедренный треугольник с боковой стороной b (b /= а) и перпендикулярна к плоскости основания. Найдите площадь сечения, которое является квадратом и пересекает эту грань по прямой, параллельной основанию.
3.25. Боковые ребра треугольной пирамиды равны а, b, с. Плоские углы при вершине прямые. В пирамиду вписан куб так, что одна его вершина находится в вершине пирамиды, а противоположная лежит в плоскости основания пирамиды. Найдите ребро куба.
3.26. В правильную треугольную пирамиду с высотой h вписан куб с ребром а так, что основание куба лежит на основании пирамиды. Найдите объем пирамиды.
3.27. Трехгранный угол, образованный тремя взаимно перпендикулярными прямыми, пересечен плоскостью. Докажите, что полученный в сечении треугольник остроугольный.
3.28. Найдите объем тетраэдра ABCD, если BC = AD = а, CA = DB = b, AB = DC = с.
3.29. В пирамиде ABCD объем V = 48, AB = 12, CD = 8. Расстояние между AB и CD равно 6. Найдите угол между ребрами AB и CD.
3.30. В правильной треугольной призме ABCA1B1C1 проведена плоскость A1BC. В образовавшуюся над этой плоскостью часть призмы вписан шар радиусом R. Найдите объем призмы.