Ваховский Евгений Борисович
Шрифт:
Докажите, что в обоих случаях задача имеет единственное решение.
2.7. Проведем через точку M прямую AB так, чтобы ее отрезок, заключенный между сторонами угла, делился в точке M пополам. Для этого построим МС параллельно OA (рис. P.2.7, а) и отложим СВ = ОС. Так как СМ — средняя линия в треугольнике ОВА, то ВМ = МА.
Итак, пусть AM = МВ (рис. P.2.7, б). Проведем произвольную прямую EF через точку M. Покажем, что площадь треугольника ОАВ меньше площади треугольника ОЕF. Проведем AK параллельно OB (если FM < ЕМ). Треугольники AMK и ВМF равны. Следовательно,
SОЕf = SОАМF + SAMK + SAEK > SОАМF + SВМF = SОАВ.
2.8. Вместо искомого треугольника ABC построим треугольник А1АА2, который получается из ABC так, как показано на рис. P.2.8 (А1В = ВА, А2С = СА).
Угол А1АА2 этого треугольника равен + + А. Однако 2 = B, а 2 = С (по свойству внешних углов). Поэтому
+ + А = B + C/2 + A = - A/2 + A = + A/2.
Теперь в треугольнике А1АА2 известны основание А1А2 = 2p, высота, равная hа, и угол при вершине, равный /2 + А/2. Вершина А будет лежать на пересечении прямой, параллельной А1А2 и отстоящей от А1А2 на расстоянии hа, и сегмента, построенного на отрезке А1А2 и вмещающего угол /2 + А/2.
Вершины B и С лежат на пересечении А1А2 и перпендикуляров, проведенных через середины А1А и А2А.
Задача может иметь два симметричных решения, если высота меньше стрелки сегмента, одно решение, если они равны, и не имеет решений, если hа больше стрелки сегмента.
2.9. Пусть P — искомая точка. Повернем треугольник АВР на 60° вокруг точки А. При этом точка P перейдет в точку Р1, а точка B — в точку В1 (рис. P.2.9).
Так как угол Р1АР равен 60° и АР1 = АР, то треугольник Р1АР правильный и АР = Р1Р. Таким образом, В1Р1РС — ломаная, составленная из отрезков длины BP, АР и CP соответственно. Так как эта ломаная имеет закрепленные концы в точках В1 и С, то ее длина будет наименьшей, если она выпрямится в отрезок В1С.
Итак, точка P лежит на отрезке В1С. Аналогично можно показать, что точка P лежит на отрезке С1В, вершина С1 которого получена поворотом AC вокруг А на 60°.
Отсюда простое построение. На отрезках AB и AC строим правильные треугольники АВ1В и АС1С, лежащие вне треугольника ABC. Искомая точка P будет лежать на пересечении прямых В1С и С1В.