Вход/Регистрация
Сборник задач по математике с решениями для поступающих в вузы
вернуться

Ваховский Евгений Борисович

Шрифт:

2.21. Две противоположные вершины искомого квадрата лежат, во-первых, на внешних полуокружностях, построенных на сторонах данного четырехугольника (рис. P.2.21), и, во-вторых, на диагонали квадрата, которая пересекает внутренние полуокружности в точках E и F, таких, что АF = FB = DE = EC = 45°.

После проведенного анализа построение очевидно.

2.22. Выберем на глаз отрезок длины 1. Построим прямоугольный треугольник с катетами 1 и 1. Гипотенуза его равна 2. Далее возьмем катеты 1 и 2. Получим гипотенузу 3. Если же катеты равны 3 и 2, то гипотенуза равна 7. На сторонах острого угла А (для удобства) отложим AB = 1, АВ1 = 7, AC = 7 (рис. P.2.22).

Соединим B и С, через В1 проведем прямую, параллельную BC. Она пересечет AC в точке С1. Из подобия треугольников ABC и АВ1С1 имеем AB : АВ1 = AC : АС1. Отсюда

 Однако это 7 выбранных нами единиц, а не реальный отрезок длины 7, данный в условии задачи. Отложим АС2 = 7. Это уже данный в условии отрезок. И проведем С2В2 || СВ. Отрезок АВ2 = 7.

2.23. Так как длина искомого отрезка есть

а длина данного отрезка равна а, то рассмотрим только такие значения а, что одновременно

Решение этой системы есть два интервала: 0 < а < 1 и а > 3.

Пусть 0 < а < 1. Тогда удобнее записать длину искомого отрезка так:

На одном луче угла отложим отрезки OA = 2 + а и OB = 3 + а, а на другом луче — отрезок ОС = 3 - а (рис. P.2.23, а). Соединим А и С, проведем BD || AC. Тогда

Осталось построить отрезок, длина которого равна OD/1 - а. Для этого отложим на одном луче угла отрезки OD и ОЕ = 1 - а, а на другом луче отрезок OK = 1 (рис. P.2.23, б). Проведем DL || EK. Отрезок OL имеет искомую длину:

Осталось рассмотреть случай а > 3. Решение отличается только тем, что вместо отрезков длины 3 - а и 1 - а придется рассматривать отрезки длины а - 3 и а - 1.

Глава 3

Геометрические задачи в пространстве

3.1. На луче, перпендикулярном к MN, возьмем произвольную точку А (рис. P.3.1). Спроецируем OA на плоскость P, а полученный отрезок OB на второй из данных лучей. Треугольник АСО прямоугольный (по теореме о трех перпендикулярах).

Косинус искомого угла АОС равен ОС/OA. Используя построенным треугольники, можно выразить ОС через OA:

ОС = OB sin = OA cos sin .

Ответ. arccos (cos sin ).

3.2. Спроецируем данный треугольник ABC на плоскость P (рис. P.3.2) и построим угол CED, равный x, между плоскостью треугольника и плоскостью P. Введем в рассмотрение линейный элемент CD = а.

Тогда

Так как СЕ — высота в треугольнике ABC, опущенная на гипотенузу, то (из сравнения площадей) имеем

Подставляя вычисленные раньше значения AC, BC и СЕ, получим 

откуда

Так как угол x по построению всегда острый, то он определяется однозначно.

Ответ.

3.3. Из некоторой точки В1 на стороне угла опустим перпендикуляр B1B на плоскость P (рис. P.3.3). Через В1 проведем плоскость, параллельную плоскости P. Она пересечет другую сторону угла в некоторой точке А1. Через B1B и А проведем плоскость, которая будет перпендикулярна к плоскости P.

  • Читать дальше
  • 1
  • ...
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: