Ваховский Евгений Борисович
Шрифт:
Задача может иметь два решения (сегмент, опирающийся на АВ1, пересекает хорду CD), одно решение (этот сегмент касается хорды) и может не иметь решений вовсе (точек пересечения нет).
2.16. Пусть отрезок FD делится точкой M пополам (рис. P.2.16). Отразим точку B от точки M. Получим точку E. Отрезки FD и ЕВ можно рассматривать как диагонали параллелограмма.
Заметим также, что угол АСВ известен, так как точки А и B зафиксированы на окружности; обозначим его через . Угол АFЕ равен - . Следовательно, точка F обладает еще и тем свойством, что из нее отрезок AE виден под данным углом - .
Итак, строим точку E, а на отрезке AE — сегмент, вмещающий угол - . На пересечении дуги этого сегмента с данной прямой получим точку F.
Задача имеет единственное решение, если точки А и B лежат по одну сторону от данной прямой, и не имеет решений в остальных случаях.
2.17. Пусть прямая, проведенная через точки А и B, пересекает прямую PQ в точке С (рис. P.2.17), и пусть О — центр искомой окружности. Тогда СА · СВ = CD^2. Отрезки СА и СВ известны, отрезок CD — их среднее геометрическое и строится стандартным образом.
Если точки А и B лежат по одну сторону от PQ, то задача имеет два решения (отрезок CD можно отложить вправо и влево от точки С). Если AB и PQ параллельны, то задача имеет единственное решение, которое очевидно, но не может быть получено описанным способом. Когда точки А и P лежат по разные стороны PQ, задача не имеет решения.
2.18. Отрезки МВ и МА или их продолжения пересекают данную окружность в точках С и D (рис. P.2.18), которые являются основаниями высот треугольника АМВ, опущенных из его вершин А и B. Отрезок МР, проведенный через точку P пересечения AC и BD, будет искомым перпендикуляром.
Задача имеет решение, если точка M не лежит на прямой AB.
2.19. Предыдущая задача позволяет построить некоторый перпендикуляр к диаметру AB, пересекающий данную окружность в точках, которые мы обозначим буквами С и D (рис. P.2.19). Проведем прямую СМ; она пересечет диаметр AB (или его продолжение) в точке E. Проведем ED. B пересечении ED и данной окружности получим точку F; MF — искомый перпендикуляр.
2.20. Построим точку А1 симметричную точке А относительно прямой l (рис. P.2.20). Для любой точки С на прямой l (в силу неравенства треугольника) справедливо соотношение
|AC– BC| = |А1С– BC| <= А1В.
Величина |А1С– BC| будет меняться в зависимости от положения точки С, и станет наибольшей, когда точка С займет положение С1 (на пересечении прямых А1B и l). Именно для этой точки треугольник СА1В вырождается в отрезок С1В, а неравенство треугольника превращается в равенство: |А1С– BC| = А1B. Из построения следует, что точка С единственная (если бы мы отражали от прямой l точку B, то пришли бы к той же точке С).