Вход/Регистрация
Сборник задач по математике с решениями для поступающих в вузы
вернуться

Ваховский Евгений Борисович

Шрифт:

Ответ. 1/27.

3.13. Пусть О1, О2 и О3 — точки пересечения медиан соответствующих граней (на рис. P.3.13 изображены лишь О1 и О2), О — центр шара.

Прямоугольные треугольники SO1О, SO2О и SO3О равны (О1О = О2О = О3О, OS — общая гипотенуза). Следовательно, SO1 = SO2 = SO3, и поэтому SB1 = SB2 = SB3.

Докажем теперь, что треугольник А1А2А3 правильный. Для этого достаточно установить равенство треугольников A2SB1 и A2SB3, т. е. любых соседних из шести таких треугольников. Установим в них равенство углов при вершине S. Пусть C2 — точка пересечения плоскости О1ОО2 с ребром SA2. Прямоугольные треугольники О1SC2 и О2SC2 тоже равны. Отсюда углы О1SC2 и О2SC2 равны и, следовательно, равны треугольники B1SA2 и B3SA2. Таким образом, В1А2 = В3А2, т. е. А2А3 = А1А2. Итак, в основании пирамиды лежит правильный треугольник.

Из равенства треугольников B1SA2 и B3SA2 следует также равенство треугольников A1SA2 и A2SA3, т. е. равенство всех боковых ребер. Это означает, что вершина S проецируется в центр основания А1А2А3. Тем самым доказано, что пирамида правильная.

3.14. Достроим пирамиду до полной. Все параллельные сечения пирамиды подобны. Составим схематический рис. P.3.14, на котором А и B — стороны квадратов, равновеликих основаниям, M — сторона квадрата, равновеликого сечению, проходящему через середину высоты данной усеченной пирамиды. Последнее условие мы запишем так:

Из подобия треугольников, изображенных на рис. P.3.14, следует, что

откуда

Составим среднее арифметическое величин А и B:

что и требовалось доказать.

3.15. Достроим треугольник ABC до параллелограмма ABCE (рис. P.3.15). Угол DAE равен углу между AD и BC. Обозначим его через x.

B треугольнике DAE

AD = а1, AE = а.

Вычислим DE. Так как в дальнейшем мы воспользуемся теоремой косинусов, то удобнее находить DE^2.

Отрезок DO является медианой в треугольниках ADC и BDE:

Чтобы найти DE^2, достаточно вычислить BE^2. Но ВЕ — диагональ параллелограмма ABCЕ, т. е. ВЕ^2 = 2а^2 + 2с^2 - b^2. Следовательно,

Применим к треугольнику ADE теорему косинусов:

DE^2 = a1^2 + a^2 - 2aa1 cos x.

Приравнивая два выражения для DЕ^2, найдем cos x. При этом следует иметь в виду, что по определению угла между скрещивающимися прямыми x — острый угол.

Ответ.

3.16. Плоскость ABE (рис. P.3.16) делит тетраэдр на две пирамиды SABE и CABE с общим основанием ABE.

Так как отношение объемов дано, а основание у пирамиды общее, то h2 : h1 = 5 : 3, в силу же равенства SD = CD имеем

sin /sin = 3/5, т.е. sin = 3/5 sin .

  • Читать дальше
  • 1
  • ...
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: