Вход/Регистрация
Сборник задач по математике с решениями для поступающих в вузы
вернуться

Ваховский Евгений Борисович

Шрифт:

10.42. Так как x– 2 > 0, то x– 1 > 1 и, следовательно, (x– 1)^2 > 1.

10.43. Из условия, что log2 (2 - 2х^2) > 0, легко вывести, что |2 |x|- 1| <= 1.

10.44. Перейти от неравенств между функциями к неравенству между аргументами и учесть необходимые ограничения.

10.46. Для положительного основания (обозначим его f(x)) нужно решить две системы

которые равносильны неравенству

(f(x) - 1)(x– 4) >= 0.

При f(x) < 0 следует рассмотреть случаи, когда показатель степени x– 4 — четное число.

10.47. Известно, что при неположительном дискриминанте знак квадратного трехчлена не может быть противоположен знаку старшего коэффициента. Если же дискриминант положителен, то такие точки всегда найдутся.

10.48. Поскольку из ложного утверждения следует все, что угодно, решение распадается на две части: а) находим значения а, при которых первое неравенство не имеет решений, тогда из него следует второе; б) если первое неравенство имеет решения, то они не должны выйти за рамки решений второго неравенства.

10.49. Рассмотрите варианты расположения параметра а относительно интервала (1, 2). Особое внимание обратите на граничные точки этого интервала.

10.50. Неравенство

(x + 5)[(x + 3) · 22 + x– (2 + x)] > 0

при x = -5 не удовлетворяется. Остается рассмотреть случаи x + 5 < 0 и x + 5 > 0. Далее удобно рассмотреть и случаи x + 3 < 0 и x + 3 > 0 (x + 3 = 0 тоже не является решением неравенства). (!!)

Решить неравенства

удобнее, изобразив графически функции, стоящие в левой и правой частях этих неравенств.

10.52. Данное неравенство можно преобразовать к виду:

или

10.53. Левую часть неравенства следует преобразовать к виду

1 - |у|^2.

K главе 11

11.1. Остается заметить, что lg 2 + lg 5 = 1.

11.3. Привести уравнение к равенству степеней с одинаковыми показателями.

11.4. Обратить внимание на тот факт, что поскольку у = 3– |x– 2|, то 0 < у <= 1.

11.7. Если обе части уравнения разделить на 2 + 3, то придем к квадратному уравнению относительно у = (2 + 3)x^2 - 2x.

11.8. Совсем нетрудно найти один корень уравнения. Затем нужно попытаться доказать, что других решений нет. (!!)

Корнем будет x = 2. Докажите, что других корней нет, используя монотонность показательной функции.

11.10. Левую часть выразить через у = log3(3x – 1).

11.11. Можно обозначить logx 7 = у, но удобнее использовать другое обозначение. Какое — станет ясно, если дополнить правую часть до полного квадрата (суммы или разности?).

11.14. Когда мы заменим logx 4 · log4 x единицей, получим уравнение, которое может иметь посторонний корень x = 1. Поскольку в дальнейшем нам придется потенцировать, что снова может повлечь приобретение посторонних корней, решение необходимо закончить проверкой.

11.15. При переходе к логарифмам с основанием x мы можем потерять корень. Какой?

11.16. Чтобы воспользоваться формулой модуля перехода, нужно умножить обе части уравнения на log2 (3 + x).

  • Читать дальше
  • 1
  • ...
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: