Шрифт:
Все M суть P. Ни одно M не есть P.
Все, некоторые, одно S суть M. Все, некоторые, одно S суть P.
________________________ __________________________
Все, некоторые, одно S суть M. Все, некоторые, одно S не суть P.
Там при помощи среднего понятия к субъекту, которому оно принадлежит, присоединяется предикат; здесь таковой исключается относительно него.
Модусы второй фигуры точно так же сводятся прежде всего к двум формам вывода: если в каком-либо субъекте S мыслится предикат М, который исключается каким-либо другим понятием Р, то это последнее само исключается субъектом. И если каким-либо субъектом исключается понятие М, которое содержит под собой другое понятие P, то P исключается субъектом. Выражено это S общим или частным – это безразлично. Мы имеем, следовательно,
Ни одно P не есть M. Всякое P есть M.
Все, некоторые, одно S суть M. Все, некоторые, одно S не суть M.
____________________________________________________
Все, некоторые, одно S не суть P. Все, некоторые, одно S не суть P.
Но если мы сведем теперь необходимое правило, по которому совершается вывод, к его соответствующему выражению, то для первой фигуры оно гласит
Если нечто есть B, то оно есть A (1 и 3 модус).
Если нечто есть B, то оно не есть X (2 и 4 модус).
В качестве меньшей посылки является «определенные субъекты C суть B»; в качестве следствия – «следовательно, они суть A, следовательно, они не суть X».
Но те же самые правила должны лежать в основании также и второй фигуры. Ибо нет какого-либо иного следствия из простых отношений между понятиями. Только теперь отсюда выводится, что следствие не наступает; следовательно, из незначимости следствия делается вывод к незначимости основания.
Если нечто есть B, то оно есть A.
A C (всякое С, некоторое С) не есть A,
следовательно, также и не B (2 и 4 модус).
Если нечто есть B, то оно не есть X.
A C (всякое С, некоторое С) есть X,
следовательно, не B (1 и 3 модус).
Связь, как и различие первой и второй фигур уясняется, следовательно, просто из того, что там из значимости основания делается вывод к значимости (утвердительного или отрицательного) следствия, здесь из незначимости (утвердительного или отрицательного) следствия делается вывод к незначимости основания. И тем самым обе первые фигуры Аристотеля точно согласуются с тем, что мы выше нашли в § 53.
Таким образом, все модусы первой и второй фигуры можно представить в одной единственной формуле, из которой вместе с тем уясняются как основания процесса вывода, так и их различия.
Большая посылка:
Если нечто есть B, то оно есть A – то оно не есть X.
Меньшая посылка и заключение 1 фигуры:
C (всякое, некоторое, одно C) есть B,
следовательно, C (всякое, некоторое, одно C) есть A – не есть X.
Меньшая посылка и заключение 2 фигуры:
C (всякое, некоторое, одно C) не есть A – есть X,
следовательно, C (всякое, некоторое, одно C) не есть B127.
7. Частные суждения третьей фигуры имеют существенно иное значение, нежели частные суждения обеих первых фигур. У этих последних взятый в качестве частного термин уже первоначально стоит в качестве субъекта и частный характер есть нечто побочное, быть может, просто словесное выражение; одни и те же субъекты являются как в меньшей посылке, так и в заключении. Но там частное выражение появляется в качестве субъекта лишь в заключении, и благодаря этому ему свойственна вся неопределенность частного; оно эквивалентно лишь суждению возможности; о необходимом следствии в обыкновенном смысле в третьей фигуре совсем не может быть речи. Что два предиката принадлежат одному и тому же субъекту – это в первом, третьем и четвертом модусах является одинаково существенным; ибо в обоих последних только часть всех M, тождественная с некоторыми M, несет на себе бремя вывода. Но отсюда следует просто, что оба предиката соединимы, т. е. не исключают друг друга. Что предикат P недостает субъекту, относительно которого имеет силу другое S, – это равным образом является общим для 2, 5 и 6 модусов; и отсюда следует, что они не необходимо сопринадлежны. Следовательно, строго говоря, правило, по которому делается вывод и которое обосновывает выведение заключения из посылок, вовсе не выражается в самих этих последних. Невысказанная большая посылка к утвердительным модусам есть «если два предиката принадлежат тому же самому субъекту, то они соединимы, они необходимо не исключают друг друга»; обе посылки образуют совместно меньшую посылку к невысказанной большей посылке. Точно так же большей посылкой к модусам с отрицательным заключением является «если из двух предикатов один недостает субъекту, которому принадлежит другой, то они не являются необходимо сопринадлежными». Обе посылки снова образуют совместно меньшую посылку к этой большей посылке.