Вход/Регистрация
Новый ум короля: О компьютерах, мышлении и законах физики
вернуться

Пенроуз Роджер

Шрифт:

A ( s , t ) х A ( t , p )

того, что фотон достигнет точки р на экране через щель t . Как и в случае вероятностей, это — правильная амплитуда в предположении, что верхняя щель открыта независимо от того, открыта или не открыта нижняя щель b . Аналогично, в предположении, что открыта нижняя щель b , мы получаем амплитуду

A ( x , b ) х А ( b , р )

того, что фотон достигнет точки р на экране через щель b (независимо от того, открыта или не открыта верхняя щель t ). Если же открыты обе щели, то мы получаем полную амплитуду

A ( s , р ) = A ( s , t ) х A ( t , р ) + A ( s , b ) х A ( b , р )

того, что фотон попадает в точку р из точки s .

Все это очень мило, но совершенно бесполезно, пока мы не знаем, как интерпретировать амплитуды, когда квантовый эффект увеличивается до классического уровня. Мы могли бы, например, поместить детектор фотонов, или фотоячейкув точке р , что дало бы нам способ увеличения события, происходящего на квантовом уровне, — прибытия фотона в точку р — до события, различимого на классическом уровне, скажем, громкого «щелчка». (С таким же успехом можно было бы взять в качестве экрана фотопластинку, на которой фотон оставляет видимое пятнышко, но для большей доходчивости мы все же воспользуемся фотоячейкой, издающей при срабатывании звуковой сигнал.) Должна существовать реальная вероятностьтого, что произойдет восприятие звукового «щелчка», а не одной из этих загадочных «амплитуд»! Как нам перейти от амплитуд к вероятностям, когда мы переходим с квантового уровня на классический? Оказывается, что для этого существует очень красивое, но удивительное правило.

Правило это состоит в том, что для получения классической вероятности, необходимо взять квадрат модуляквантовой комплексной амплитуды. Что такое «квадрат модуля»? Напомним как изображаются комплексные числа на плоскости Аргана (глава 3, с. 84). Модуль | z | комплексного числа z есть просто расстояние от начала координат (т. е. от точки 0 ) до точки, изображающей число z . Квадрат модуля | z | 2 — просто квадрат этого числа. Таким образом, если

z = х + iy ,

где x и у — действительные числа, то (по теореме Пифагора, так как отрезок прямой, соединяющий точки 0 и z , служит гипотенузой прямоугольного треугольника с катетами х и у ) квадрат модуля равен

| z | 2 = х 2 + у 2 .

Заметим, что для того, чтобы это выражение было настоящей «нормированной» вероятностью, значение | z | 2 должно быть заключено между 0 и 1 . Это означает, что для того, чтобы быть надлежащим образом нормированной амплитудой, точка z на плоскости Аргана должна лежать где-то внутри единичной окружности(рис. 6.8).

Рис. 6.8.Амплитуда вероятности представлена как точка z внутри единичной окружности на плоскости Аргана. Квадрат расстояния | z | 2 от центра может стать действительной вероятностью, если эффекты увеличены до классического уровня

Однако иногда возникает необходимость рассматривать комбинации

х альтернатива А + z х альтернатива В ,

  • Читать дальше
  • 1
  • ...
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: