Вход/Регистрация
Квантовая хромодинамика: Введение в теорию кварков и глюонов
вернуться

Индурайн Франсиско Хосе

Шрифт:

В действительности это не так. При построении теории была допущена некоторая неточность. Рассмотрим для простоты скалярное взаимодействие вида , где поле безмассовое. Лагранжиан, описывающий систему взаимодействующих полей, имеет вид

L=

(i

– m) + 1/2

+ g

.

(8.1)

Как уже говорилось выше, S -матрица определяется выражением

S

=

T exp i

d

4

xL

0

(x)

int

=

 

1+

i

n

d

4

x

1

…d

4

x

n

TL

0

(x)

1

…L

0

(x)

n

,

n!

int

int

 

n=1

(8.2)

где входящие в лагранжиан L0int(x) поля рассматриваются как свободные и записываются в нормально упорядоченной форме. Член L0int совпадает с трилинейным членом выражения (8.1) после замены ->0, ->0:

L

0

=

g:

0

0

:

0

.

int

(8.3)

Но эта процедура некорректна. Очевидно, что поля, фигурирующие в выражении (8.1) не являются свободными, а их масса m не совпадает с массой, которую имеет поле в отсутствие взаимодействий. Это видно из выражения (7.5) для кваркового пропагатора, в котором масса кварка заменена на комбинацию вида

m{1-

4

g

2

B

D

},

3

а числитель умножен на выражение

1 -

4

g

2

A

D

3

В силу свойства инвариантности теории по отношению к преобразованиям групп внутренней и пространственной симметрии допустимы лишь следующие изменения полей и параметров, фигурирующих в лагранжиане: изменения мультипликативного типа

– >Z

– 1/2

u

, ->Z

– 1/2

u

, g->Z

 

g , m->Z

 

m ,

g

m

(8.4)

и изменения, вызванные добавлением в лагранжиан некоторых дополнительных членов. Можно показать, что в рассматриваемом случае скалярного взаимодействия необходимо еще добавить в лагранжиан член вида 4. Но мы пока этим членом пренебрежем. Таким образом, принимая во внимание только (8.4), из формулы (8.1) получаем выражение для так называемого "перенормированного" лагранжиана

L

R

 

=

Z

– 1

 

i

 

– Z

– 1

Z

 

m

 

 

+Z

– 1

 

 

u

u

m

u

u

u

 

u

+

Z

 

Z

– 1

Z

– 1/2

g

 

 

 

,

g

  • Читать дальше
  • 1
  • ...
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: