Вход/Регистрация
Пространство, время и движение. Величайшие идеи Вселенной
вернуться

Кэрролл Шон

Шрифт:

(6.19)

Подставив это выражение в формулу (6.17), получим:

(6.20)

Второе слагаемое выглядит знакомо: это кинетическая энергия. Оказывается, что нулевой компонент 4-импульса представляет собой нечто энергоподобное и равен сумме массы и кинетической энергии.

А почему бы нам не определить энергию релятивистского объекта как нулевой компонент его 4-импульса? Мы можем записать:

(6.21)

В качестве побочного эффекта из этой формулы понятно, почему ракеты не могут летать со скоростью выше скорости света. Чем ближе v к 1, тем

ближе к нулю, а
— к бесконечности. Чтобы разогнать ракету до скорости света, а тем более превысить ее, потребуется бесконечное количество энергии. Это невозможно.

Если же скорость намного меньше скорости света, то в силу выражения (6.20) получим:

(6.22)

Мы говорим, что кинетическая энергия — это «энергия объекта, связанная с его движением». Другое слагаемое, которое равно просто массе m, можно понять как «энергию, которую объект имеет в состоянии покоя». Назовем ее энергией покоя, Eпокоя = m.

В этом выражении не все в порядке с единицами измерения. Возможно, это связано с тем, что мы принимаем c = 1 и опускаем. Мы знаем, что энергия измеряется в единицах массы, умноженных на квадрат единицы скорости. Поэтому мы можем устранить проблему, домножив массу на c2. Так мы приходим к знаменитой формуле:

Eпокоя = mc2. (6.23)

Чаще всего слово «покоя» в этой формуле опускается. Это неправильно и может вводить в заблуждение. На самом деле смысл ее в том, что объекты обладают энергией, даже когда находятся в полном покое, и эта энергия равна массе, умноженной на квадрат скорости света. (Кроме того, можно сказать, что масса объекта равна «значению 4-импульса объекта в неподвижной системе отсчета». Оба варианта верны.)

То, что мы рассмотрели — самый известный пример концептуальной унификации, которую дает нам специальная теория относительности. Энергия и импульс — не независимые понятия: энергия лишь временеподобная версия импульса. В этом и состоит одна из замечательных особенностей физики: разрозненные понятия могут быть собраны вместе силой одной хорошей теории.

Семь. Геометрия

Когда в 1907 году Минковский предположил, что лучше всего рассматривать специальную теорию относительности в терминах единого четырехмерного пространства-времени, Эйнштейн отнесся к этому скептически. В печати он жаловался, что подход Минковского «предъявляет к читателю довольно высокие математические требования».

Но вскоре Эйнштейн оценил труды Минковского. Это случилось, когда вдруг стало понятно, что гравитацию можно рассматривать как проявление кривизны пространства-времени, а значит, расширить теорию относительности. Однако какая же физическая теория без уравнений? И в данном случае на помощь приходит геометрия, особенно геометрия Римана, которая позволяет произвольно искривлять пространства и изучать их изнутри, а не встраивать их в какое-то более многомерное пространство.

Увы, Эйнштейн ничего не знал о геометрии Римана. В то время она была почти никому не известна, поскольку появилась лишь в середине XIX века и к 1910-м годам не нашла какого-то особого применения в физике. Но к счастью, Марсель Гроссман, старый одноклассник Эйнштейна, работал профессором математики и неплохо владел этой темой. С помощью Гроссмана Эйнштейн довольно хорошо освоил геометрию Римана и сформулировал общую теорию относительности — собственный взгляд на теорию гравитации.

Теперь пришла наша очередь. Если сам Эйнштейн, отложив собственные труды, выучил геометрию Римана, можно ли нам оставаться в стороне? Поэтому мы посвятим ей целую главу (ведь, несомненно, Риман предложил одну из «величайших идей»), а в следующей главе мы используем ее во благо физики.

Геометрия Евклида

С удовольствием или отвращением, но все мы помним школьные уроки геометрии. Все эти треугольники, окружности и другие фигуры. То, что мы изучали тогда, неразрывно связано с Евклидом, античным математиком, который жил в Александрии, примерно тогда же, когда Аристотель писал свои философские трактаты. Геометрию Евклида можно назвать «настольной», поскольку все фигуры и линии можно изобразить на плоской, двумерной поверхности (хотя достаточно легко перенести в трехмерное или многомерное пространство).

Влияние Евклида заключается не столько в конкретных результатах — теоремах о свойствах геометрических фигур, — сколько в самом подходе, который он предложил. На самом деле многое из того, что вошло в геометрию Евклида, было известно и до его работ:

• Теорема Пифагора: квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

• Сумма углов треугольника равна 180° (? радиан).

• Длина окружности равна 2?r, где r — ее радиус.

  • Читать дальше
  • 1
  • ...
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: