Вход/Регистрация
Пространство, время и движение. Величайшие идеи Вселенной
вернуться

Кэрролл Шон

Шрифт:

Но даже на плоском многообразии мы не обязаны использовать декартову систему координат. Возьмем вместо нее полярную систему, в которой положение точки на плоскости определяется расстоянием r до центра системы и углом ? относительно горизонтальной оси. Вычислим длину бесконечно малого сегмента кривой в этих координатах.

Физическая длина, соответствующая изменению угла d?, не постоянна, но возрастает с увеличением r. При постоянном r она, очевидно, будет равна rd?. Поэтому формула для произвольного бесконечно малого сегмента будет иметь вид:

ds2 = dr 2 + r 2d?2. (7.2)

Это почти теорема Пифагора, но с множителем r2 перед d?2, который как раз и выражает мысль о том, что приращение d? возрастает с увеличением длины r. Мы сохраняем дух теоремы Пифагора, но как бы обобщаем ее, вносим в нее влияние физических расстояний на приращение координат.

Линейный элемент

Вдохновляясь этим примером, попробуем понять, что такое линейный элемент — универсальная формула, которая позволяет определить длину произвольного бесконечно малого сегмента ds, выраженного через бесконечно малые приращения координат. Для простоты начнем с двумерного многообразия.

Допустим, что у нас есть две координаты (x1, x2). В данном случае надстрочные цифры — индексы, а не степени (так же, как при разговоре о компонентах вектора). Нам нужно связать расстояние ds с приращениями координат dxi. Не забывая теорему Пифагора, мы можем ожидать, что квадрат расстояния ds2 будет связан с квадратами приращений координат, к примеру (dx1)2. (Это квадрат dx1, так что теперь надстрочные цифры — и индексы, и степени. Не путайте!) Чтобы получить формулу в как можно более общем виде, нам нужно учесть наличие «перекрестных членов», произведений координат (dx1dx2). Кроме того, у нас могут быть множители, которые сами по себе зависят от координат, как, например, в полярной системе.

В самом общем виде формула двумерного линейного элемента имеет вид:

(7.3)

Тут очень много скобок и надстрочных символов. Вдохнем поглубже и попытаемся в них разобраться. Три величины, A, B и C, — это числа, значения которых зависят от конкретной точки многообразия. Поэтому мы записали их в виде функций от координат (x1, x2). Каждое из них умножается на произведение приращений координат dx1 и dx2 в трех возможных сочетаниях: (dx1)2, (dx2)2 и dx1dx2. Последнее произведение важно, когда оси координат не перпендикулярны друг к другу.

Формула (7.3) имеет огромное значение, ведь если три функции, A(x1, x2), B(x1, x2) и C(x1, x2), известны, то с ее помощью можно найти длину любой произвольной кривой. Риман утверждает, что этих данных достаточно, чтобы полностью определить геометрию многообразия. Эти функции хранят в себе сведения обо всем: углах, площадях, кривизне, обо всем, что мы захотим узнать. Этот принцип будет работать при любом количестве измерений, но с той лишь разницей, что станет больше и функций. В d– мерном пространстве для полного определения линейного элемента потребуется d(d + 1)/2 функций.

Извлечь геометрические данные из этих функций не очень-то просто. Проблема в том, что в разных системах координат линейный элемент может иметь разное выражение, хотя геометрия от этого никак не зависит. Мы уже видели это на примере плоской поверхности. В декартовых координатах линейный элемент (7.1) принимает вид (7.3) при следующих функциях:

A(x, y) = 1, B(x, y) = 0, C(x, y) = 1. (7.4)

Если же взять полярную систему координат и формулу (7.2), понадобятся другие функции:

A(r, ?) = 1, B(r, ?) = 0, C(r, ?) = r 2. (7.5)

Одна и та же геометрия, но разные варианты линейного элемента для разных систем координат. Но геометрии нет дела до них, плодов человеческой изобретательности, не имеющих никакого отношения к внутренним свойствам многообразия. Чтобы выдавить из линейных элементов сведения о кривизне, придется нажать на них посильнее.

Метрика

Для начала подумаем о более удобных обозначениях. Чем больше измерений, тем больше функций придется ввести для линейного элемента, а значит, хорошие обозначения — уже огромное подспорье.

Ввести такое обозначение несложно: воспользуемся схемой, которую дает выражение (7.3). Мы будем рассматривать пары приращений dxi и dxj, где i и j — индексы, значения которых определяются количеством измерений. Индексы могут иметь как разные, так и одинаковые значения. Для каждой пары определим функцию пространства-времени gij(x), причем в данном случае буква x обозначает все координаты сразу. Буквы i и j сами по себе не несут никакого конкретного смысла, мы можем использовать любые. Таким образом, на (dx1)2 мы будем умножать функцию g11, на dx1dx2 — функцию g12 и т. д.

  • Читать дальше
  • 1
  • ...
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: