Шрифт:
Уже говорилось, что любой, кто бы ни сумел доказать ТРПЧ, тем самым снискал бы себе бессмертие. Это предсказание едва не сбылось: Шарль де ля Валле Пуссен умер за пять месяцев до своего 96-летия, а Жак Адамар — за два месяца до 98-летия. [79] Они не знали — по крайней мере, достаточно долго не знали, — что соревнуются друг с другом; и, поскольку оба они опубликовали свои результаты в один и тот же год, со стороны математиков было бы нечестно отдавать предпочтение кому-то одному из них за то, что он получил этот результат первым. Как и в случае восхождения на Эверест, они разделили славу.
79
Несмотря на некоторое число печальных примеров, — как, скажем, Риман — математики высокого уровня демонстрируют потрясающее здоровье. При написании этой книги меня поразило число математиков, доживших до значительного возрасту и продолжавших активно трудиться практически до конца своих дней. «Математика — очень тяжелая работа, и ее корифеи имеют тенденцию быть выше среднего в том, что касается энергии и здоровья. Ниже определенного предела человек сдает, но выше этого предела напряженная умственная работа способствует сохранению энергии и здоровья (а также — как можно судить из многочисленных исторических свидетельств на протяжении многих лет — способствует долголетию)» ( Литлвуд Дж. И.Искусство работы математика. 1967). Литлвуд, о котором еще много будет сказано в главе 14, стал иллюстрацией своего собственного тезиса, дожив до 92 лет. В 1972 г. его коллега X.А. Холлонд сделал о нем следующую запись: «Ему идет 87-й год, а он продолжает работать по нескольку часов подряд, занимаясь написанием статей для публикации и помогая математикам, которые прислали ему свои задачи». (Цит. по Беркил Дж. Ч.в кн.: Математика: Люди, проблемы, результаты. Brigham Young University. 1984.)
Судя по всему, де ля Валле Пуссен опубликовался чуть раньше. Статья Адамара — она называлась Sur la distribution des z'eros de la fonction (s) et ses cons'equences arithm'etiques [80] — вышла в бюллетене Французского математического общества. Адамар добавил замечание о том, что он узнал о результате де ля Валле Пуссена, когда читал гранки своей статьи. И далее: «Однако я полагаю, что никто не сможет отрицать, что преимущество моего метода состоит в его простоте».
80
О распределении нулей функции (s) и их арифметических следствиях. (Примеч. перев.)
Этого никто никогда и не отрицал. Доказательство Адамара проще; из того факта, что он знал об этом до того, как его статья была напечатана, следует, что он не только слышал о результате де ля Валле Пуссена, но и имел возможность ознакомиться с ним. Однако поскольку их работы с очевидностью независимы, поскольку никогда не было ни малейшего намека на нечестную игру и поскольку и Адамар, и де ля Валле Пуссен были настоящими джентльменами, эти одновременные доказательства не стали причиной вражды или полемики. Я удовлетворюсь тем, что скажу, как говорит и весь математический мир: в 1896 году француз Жак Адамар и бельгиец Шарль де ля Валле Пуссен, работая независимо, доказали ТРПЧ.
Доказательство ТРПЧ является великой поворотной точкой в нашей истории — настолько важным моментом, что в соответствии с ним я разбил книгу на две части. Во-первых, оба доказательства 1896 года опирались на некоторый результат в духе Гипотезы. Если бы или Адамар, или де ля Валле Пуссен смогли доказать справедливость Гипотезы, то справедливость ТРПЧ была бы остановлена немедленно. Они, разумеется, этого не смогли, но им этого и не требовалось. ТРПЧ — это орех, а Гипотеза Римана — молоток. ТРПЧ следует из более слабого (и безымянного) утверждения:
Все нетривиальные нули дзета-функции имеют вещественную часть, меньшую единицы.
Если доказать такое, то можно воспользоваться основным результатом Римана в форме, которую ему придал фон Мангольдт, и тем самым доказать ТРПЧ. Именно это и сделали двое наших ученых в 1896 году.
Во-вторых, как только ТРПЧ перестала застилать горизонт, Гипотеза стала видна в полный рост. В ней был сосредоточен следующий по очереди ключевой открытый вопрос в аналитической теории чисел; и по мере того, как математики стали уделять ей внимание, выяснилось, что из доказательства ее справедливости последовало бы огромное множество вещей. Если ТРПЧ была гигантским Белым Китом теории чисел в XIX столетии [81] , то Гипотеза Римана заняла ее место в XX. Даже больше чем просто заняла ее место, поскольку она зачаровала не только специалистов по теории чисел, но и математиков всех сортов и даже, как мы увидим, физиков и философов.
81
Имеется в виду роман-притча Г. Мелвилла «Моби Дик, или Белый Кит» (1851). (Примеч. перев.)
И в-третьих — сколь бы тривиальным ни казалось такое обстоятельство, подобные вещи некоторым образом откладываются в людских головах, — имелось чистое совпадение, определяемое тем, что идея о ТРПЧ зародилась в конце одного столетия (Гаусс, 1792), а доказана теорема была в конце следующего (Адамар и де ля Валле Пуссен, 1896). И как только с этой теоремой дело было решено, внимание математиков переключилось на Гипотезу Римана, которая и занимала их в течение всего следующего столетия — столетия, которое завершилось, так и не принеся никакого доказательства. И это подтолкнуло любознательных исследователей широкого профиля к написанию книг о ТРПЧ и Гипотезе в начале очередного столетия!
Чтобы наполнить сформулированные выше пункты социальным, историческим и математическим содержанием, я кратко расскажу о Жаке Адамаре; мой выбор определен отчасти тем, что среди многих действующих лиц он играл наиболее важную роль, а отчасти тем, что для меня он — привлекательная и располагающая к себе личность.
В политическом отношении XIX столетие выдалось для Франции не очень счастливым. Если считать вместе со ста днями Наполеона (а также если простить мне незначительные ошибки округления), то с 1800 по 1899 год государственное устройство этой древней нации выглядит следующим образом.
• Первая республика (4 1/ 2года)
• Первая империя (10 лет)
• Реставрация монархии (1 год)
• Реставрация империи (3 месяца)
• Ререставрация монархии (33 года)
• Вторая республика (5 лет)
• Вторая империя (18 лет)
• Третья республика (29 лет)
И даже те 33 года монархии прерывались революцией и сменой династии.
Для французского народа во второй половине столетия величайшей национальной трагедией было поражение, которое французская армия потерпела от Пруссии в 1870 году; затем последовали осада Парижа пруссаками зимой 1870/71 года и мирный договор, по которому Пруссии были уступлены две провинции и выплачена колоссальная денежная контрибуция. Сам этот договор вызвал краткую, но ожесточенную гражданскую войну. Разумеется, последствия всего этого для Франции были огромны. Нация вступила во Франко-прусскую войну империей, а вышла из нее республикой.