Ваховский Евгений Борисович
Шрифт:
x^2 = 4y^2 + 20 025?
6.16. Найдите натуральные x и y, удовлетворяющие условию 113x - 69y = 11, сумма которых x + y принимает наименьшее значение.
Глава 7
Алгебраические преобразования
Следующие ниже замечания относятся не только к этой главе, они имеют более общий характер.
Множества точек x числовой оси, удовлетворяющих неравенствам
1) а < x < b;
2) а <= x <= b;
3) а <= x < b;
4) а < x <= b;
5) x > а;
6) x < а;
7) x >= а;
8) x <= а,
где а < b, называются интервалами и обозначаются соответственно (а, b); [а, b]; [а, b), (а, b]; (а, +); (-, а); [а, +); (-, а].
Интервалы 1), 5) и 6) называются открытыми; интервал 2) называется замкнутым; интервалы 3), 4), 7) и 8) называются полуоткрытыми. Иногда вместо терминов: открытый интервал, замкнутый интервал, полуоткрытый интервал используют соответственно термины: промежуток (или интервал), отрезок (или сегмент), полуотрезок.
По определению
Для арифметического корня имеет место формула
а^2 = |а|.
Иногда приходится пользоваться формулами куба суммы и разности чисел в виде
(а + b)^3 = а^3 + b^3 + 3аb(а + b);
(а - b)^3 = а^3 - b^3 - 3аb(а - b).
Следующая формула называется формулой сложного радикала:
(все подкоренные выражения должны быть неотрицательными).
По определению
где а >= 0, m, n — натуральные числа и корень арифметический.
Из этого определения следует, что степени с отрицательным основанием и дробным показателем считаются не имеющими смысла. Например,
По определению
По определению
0 = 1 при а /= 0.
Чтобы избежать недоразумений, удобно договориться, что знак корня используется либо для обозначения арифметического корня из неотрицательного числа, либо отрицательного корня нечетной степени из отрицательного числа.
Таким образом,
Для арифметических корней и корней нечетной степени из отрицательных чисел справедливо правило умножения и деления корней:
Правило, в силу которого показатель корня и показатель подкоренного выражения можно умножить на одно и то же натуральное число, справедливо для арифметических корней и не справедливо для корней нечетной степени из отрицательных чисел.
Замечание. В качестве показателя корня используются только натуральные числа. Иногда встречаются задачи, где показатели — достаточно сложные алгебраические выражения. Во избежание путаницы лучше знак корня в таких задачах не использовать, а прибегать к дробным показателям степени.
7.1. Упростите выражение
7.2. Упростите выражение
7.3. Упростите выражение
После упрощения выражения определите его знак в зависимости от x.
7.4. Упростите выражение
7.5. Упростите выражение
где