Вход/Регистрация
Сборник задач по математике с решениями для поступающих в вузы
вернуться

Ваховский Евгений Борисович

Шрифт:

AB = 2R sin , BC = 2R sin , DC = 2R sin ( + + ), AD = 2R sin .

Таким образом,

AB · DC + AD · BC = 4R^2 [sin sin( + + ) + sin sin ] = 2R^2 [cos( + ) - cos(2 + + ) + cos( - ) - cos( + )] = 2R^2 [cos ( - ) - cos(2 + + )].

Так как

AC = 2R sin ( + ), BD = 2R sin ( + ),

то

AC · BD = 4R^2 sin ( + ) sin ( + ) = 2R^2 [cos ( - ) - cos (2 + + )].

Итак,

AB · DC + AD · BC = AC · BD.

Способ 2. Введем обозначения: AB = а, BC = b, CD = с, DA = d, AC = e, BD = f. Нужно доказать, что ac + bd = ef. Выберем на диагонали AC точку E так, чтобы угол CBE был равен . Тогда треугольники CBE и DBA подобны. Поэтому EC : b = d : f.

Из подобия треугольников ABE и DBC (углы ABE и DBC равны как равносоставленные) получаем AE : а = с : f. Определим из первого соотношения EC, а из второго AE и сложим эти два равенства:

откуда ас + bd = ef, что и требовалось доказать.

1.33. Продолжим боковые стороны AB и CD трапеции (рис. P.1.33) до пересечения в точке S. Если через S и M (где M — середина BC) провести прямую, то она пересечет AD в точке N, которая является серединой AD.

Из подобия треугольников BSM и ASN имеем

откуда

Так как по условию MN = AN– BM, то BM = SM и треугольник SMB равнобедренный. Аналогично доказывается, что треугольник SMC также равнобедренный. Следовательно, угол SMC равен удвоенному углу А, а угол SMB — удвоенному углу D (по свойству внешнего угла треугольника). Но оба этих угла SMB и SMC образуют развернутый угол. Следовательно, сумма углов А и D равна 90°.

1.34. Пусть AB = а, MR = x (рис. P.1.34).

Выразим через а и x длины отрезков MQ, MS и MP. Ясно, что для этого достаточно найти длину отрезка QM, поскольку MS = а– QM, а MP = а– x. Так как QM = CR = CK + KR, то вычислим CK и KR. По условию AN = а/3, а потому (треугольники OLN и OL1K равны) CK = а/3. Чтобы найти KR, рассмотрим подобные треугольники MKR и NKN1:

откуда KR = x/3, а QM = а/3 + x/3. Остается убедиться в том, что числа а– x, 2a– x/3, а + x/3, x образуют арифметическую прогрессию с разностью 2x– a/3.

  • Читать дальше
  • 1
  • ...
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: