Вход/Регистрация
Сборник задач по математике с решениями для поступающих в вузы
вернуться

Ваховский Евгений Борисович

Шрифт:

найдем 

или наоборот

Задача имеет решение при k > 22.

Ответ.

1.19. Так как углы С, А, B треугольника ABC образуют геометрическую прогрессию со знаменателем 2, то А = 2С, B = 4С (рис. P. 1.19). Точка О — центр вписанной окружности, т. е. OK и OL являются отрезками соответствующих биссектрис.

Вычислим углы треугольника OLK. Угол KOL равен углу BOA треугольника BOA, в котором два угла уже известны: угол при вершине А равен С, а угол при вершине B равен 2С. Следовательно, угол BOA = - 3С. Но по условию = А + B + С = 7С, т. е. угол BOA, а следовательно, и угол LOK равны 4С.

Рассмотрим далее треугольник EKC. Угол при вершине E в этом треугольнике (равный углу AEO из треугольника AEO) вместе с углом OAE, равным С, образуют угол LOK, равный 4С. Таким образом, угол KEC равен 3С. Угол ECK равен половине угла ECM, который вместе с углом С образуют , т. е. 7С. Следовательно, угол ECK равен 3С. Найденные два угла, каждый из которых равен 3С, позволяют найти третий: угол OKL равен С.

Таким образом, подобие треугольников ABC и ОLK доказано.

1.20. Сумма всех углов треугольника равна 7А. Поэтому 

B силу теоремы синусов

Соотношение, которое нужно доказать, эквивалентно такому:

или

Преобразуем левую часть:

что и доказывает наше соотношение.

1.21. Проведем AL параллельно BC (рис. P.1.21).

Из подобия треугольников RAL и RBP следует, что

Из подобия треугольников AQL и CQP:

Подставляя значение AL в отношение, полученное раньше, придем к равенству

что и требовалось доказать.

1.22. Пусть AE — высота треугольника, опущенная на BC (рис. P.1.22). Тогда все участвующие в левой части равенства величины можно выразить через AE и длины отрезков, лежащих на BC. При этом следует стремиться связать каждый отрезок с точкой 1. Получим

AB^2 = BE^2 + AE^2 = (BD + DE)^2 + AE^2.

AC^2 = CE^2 + AE^2 = (CD– DE)2 + AE^2.

AD^2 = DE^2 + AE.

Воспользовавшись полученными соотношениями, составим сумму

AB^2 · DC + AC^2 · BD– AD^2 · BC.

Раскрыв скобки и приведя подобные члены, получим

(DE^2 + AE^2)(DC + BD– BC) + DC · BD^2 + BD · DC^2.

Так как DC + BD = BC, то остается

DC · BD^2 + BD · DC^2 = (BD + DC)DC · BD = BC · DC · BD,

  • Читать дальше
  • 1
  • ...
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: