Вход/Регистрация
Фейнмановские лекции по физике. 8. Квантовая механика I
вернуться

Фейнман Ричард Филлипс

Шрифт:

e – ( i / h ) Vt

сверх того, что было при V=0. Это ничем не отличается от сдвига нуля нашей энергетической шкалы. Получится одинаковый сдвиг всех фаз всех амплитуд, а это, как мы раньше убе­дились, не меняет никаких вероятностей. Все физические яв­ления остаются теми же. (Мы предположили, что речь идет о разных состояниях одного и того же заряженного объекта, так что qj у них у всех одинаково. Если бы объект мог менять свой заряд, переходя от одного состояния к другому, то мы пришли бы к совершенно другому результату, но сохранение заряда предохраняет нас от этого.)

До сих пор наше допущение согласовывалось с тем, чего сле­довало ожидать от простого изменения уровня отсчета энер­гии. Но если оно на самом деле справедливо, то обязано вы­полняться и для потенциальной энергии, которая не является просто постоянной. В общем случае V может меняться произ­вольным образом и во времени, и в пространстве, и оконча­тельный результат для амплитуды должен выражаться на языке дифференциальных уравнений. Но мы не хотим сразу приступать к общему случаю, а ограничимся некоторым пред­ставлением о том, что происходит. Так что пока мы рассмотрим только потенциал, который постоянен во времени и медленно меняется в пространстве. Тогда мы сможем сравнить между со­бой классические и квантовые представления.

Предположим, что мы размышляем о случае, изображенном на фиг. 5.3, где два ящика поддерживаются при постоянных потенциалах j1 и j2, а в области между ними потенциал плавно меняется от j1 к j2.

Фиг. 5.3. Амплитуда для частицы, переходящей от одного потенциала к другому.

Вообразим, что у некоторой частицы есть амплитуда оказаться в одной из этих областей. Допустим так­же, что импульс достаточно велик, так что в любой малой об­ласти, в которой помещается много длин волн, потенциал почти постоянен. Тогда мы вправе считать, что в любой части прост­ранства амплитуда обязана выглядеть так, как (5.18), только V в каждой части пространства будет свое.

Рассмотрим частный случай, когда j1=0, так что потен­циальная энергия в первом ящике равна нулю, во втором же пусть qj2 будет отрицательно, так что классически частица в нем будет обладать большей кинетической энергией. В клас­сическом смысле она во втором ящике будет двигаться быст­рее, у нее будет, стало быть, и больший импульс. Посмот­рим, как это может получиться из квантовой механики.

При наших предположениях амплитуда в первом ящике Должна была быть пропорциональна

а во втором

(Будем считать, что внутренняя энергия не изменяется, а остается в обеих областях одной и той же.) Вопрос заключается в следующем: как эти две амплитуды сопрягаются друг с другом в области между ящиками?

Мы будем считать, что все потенциалы во времени постоянны, так что в условиях ничего не меняется. Затем мы предположим, что изменения амплитуды (т. е. ее фазы) всюду обладают одной и той же частотой, потому что в «среде» между ящи­ками нет, так сказать, ничего, что бы зависело от времени. Если в пространстве ничего не меняется, то можно считать, что волна в одной области «генерирует» во всем пространстве вспомогательные волны, которые все колеблются с одинако­вой частотой и, подобно световым волнам, проходящим через покоящееся вещество, не меняют своей частоты. Если частоты в (5.21) и (5.22) одинаковы, то должно выполняться равенство

Здесь по обе стороны стоят просто классические полные энер­гии, так что (5.23) есть утверждение о сохранении энергии. Иными словами, классическое утверждение о сохранении энер­гии вполне равноценно квантовомеханическому утверждению о том, что частоты у частицы всюду одинаковы, если условия во времени не меняются. Все это согласуется с представлением о том, что hw=E.

В том частном случае, когда V1=0, a V2 отрицательно (5.23) означает, что p2 больше р1,т. е. в области 2 волны короче. Поверхности равной фазы показаны на фиг. 5.3 пунктиром. Там еще вычерчен график вещественной части амплитуды, из которого тоже видно, как уменьшается длин волны при переходе от области 1 в область 2. Групповая скорость волн, равная р/М, тоже возрастает так, как и следовало ожидать из классического сохранения энергии, потому что оно просто совпадает с (5.23).

Существует интересный частный случай, когда V2 становится столь большим, что V2– V1 уже превышает p21/2M. Тогда p22, даваемое формулой

становится отрицательным. А это значит, что р2— мнимо число, скажем ip'. Классически мы бы сказали, что частица никогда не попадет в область 2, ей не хватит энергии, чтобы взобраться на потенциальный холм. Однако в квантовой ме­ханике амплитуда по-прежнему представляется уравнением (5.22); ее изменения в пространстве по-прежнему следуют закону

Но раз p2— мнимое число, то пространственная зависимость превращается в вещественную экспоненту. Если, скажем, частица сперва двигалась в направлении +х, то амплитуда начнет меняться, как

С ростом х она быстро падает.

Вообразим, что обе области с разными потенциалами рас­положены очень тесно друг к другу, так что потенциальная анергия внезапно изменяется от V1 к V2(фиг. 5.4, а).

  • Читать дальше
  • 1
  • ...
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: