Вход/Регистрация
Фейнмановские лекции по физике. 8. Квантовая механика I
вернуться

Фейнман Ричард Филлипс

Шрифт:

Волновое число p/h поэтому тоже на разных путях различно, что означает, что фазы растут вдоль них с разной скоростью. Разница в скорости роста фазы есть Dk=Dр/h, и накопленная на всем пути w разность фаз будет равна

Это число показывает, на сколько к моменту выхода из полосы фаза вдоль пути b «опережает» фазу вдоль пути а. Но на вы­ходе из полосы такое опережение фаз отвечает опережению узла волны на величину

или

Обращаясь к фиг. 5.8, мы видим, что новый фронт волны повер­нется на угол dq, даваемый формулой

так что мы имеем

А это совпадает с (5.26), если заменить р/М на v, а DV/D на дV/дy.

Результат, который мы только что получили, верен лишь, когда потенциал меняется медленно и плавно — в так называе­мом классическом пределе. Мы показали, что при этих условиях получим те же движения частиц, что получились бы и из F=ma, если предположить, что потенциал дает вклад в фазу ампли­туды вероятности, равный Vt/h. В классическом пределе кван­товал механика оказывается, в согласии с ньютоновской меха­никой.

§ 5. «Прецессия» частицы со спином 1 / 2

Заметьте, что мы не предполагали, что потенциальная энер­гия у нас какая-то особая, это просто энергия, производная от которой дает силу. Например, в опыте Штерна — Герлаха энергия имела вид U=-m·B; отсюда при наличии у В прост­ранственной вариации и получалась сила. Если бы нам нужно было квантовомеханическое описание опыта, мы должны были бы сказать, что у частиц в одном пучке энергия меняется в одну сторону, а в другом пучке — в обратную сторону, (Маг­нитную энергию U можно было бы вставить либо в потенциаль­ную энергию V, либо во «внутреннюю» энергию W;куда именно, совершенно неважно.) Из-за вариаций энергии волны прелом­ляются, пучки искривляются вверх или вниз. (Мы теперь знаем, что квантовая механика предсказывает то же самое искривле­ние, которое следует и из расчета по классической механике.)

Из зависимости амплитуды от потенциальной энергии также следует, что у частицы, сидящей в однородном магнитном поле, направленном по оси z, амплитуда вероятности обязана ме­няться во времени по закону

(Можно считать это просто определением mz.) Иначе говоря, если поместить частицу в однородное поле В на время t, то ее амплитуда вероятности умножится на

сверх того, что было бы без поля. Поскольку у частицы со спи­ном 1/2 величина mz может быть равна плюс или минус какому-то числу, скажем m, то у двух мыслимых состояний в однород­ном поле фазы будут меняться с одинаковой скоростью в про­тивоположные стороны. Амплитуды помножатся на

Этот результат приводит к интересным следствиям. Пусть частица со спином 1/2 находится в каком-то состоянии, которое не есть ни чистое состояние со спином вверх, ни чистое состоя­ние со спином вниз. Его можно описать через амплитуды пре­бывания в этих двух состояниях. Но в магнитном поле у этих двух состояний фазы начнут меняться с разной скоростью. И если мы поставим какой-нибудь вопрос насчет амплитуд, то ответ будет зависеть от того, сколько времени частица провела в этом поле.

В виде примера рассмотрим распад мюона в магнитном поле. Когда мюоны возникают в результате распада p-мезонов, они оказываются поляризованными (иными словами, у них есть предпочтительное направление спина). Мюоны в свою очередь распадаются (в среднем через 2,2 мксек), испуская электрон и пару нейтрино:

При этом распаде оказывается, что (по крайней мере при высо­ких энергиях) электроны испускаются преимущественно в на­правлении, противоположном направлению спина мюона.

Допустим затем, что имеется экспериментальное устройство (фиг. 5.9): поляризованные мюоны входят слева и в блоке ве­щества А останавливаются, а чуть позже распадаются.

Фиг.. 5.9.Опыт с распадом мюона.

Испу­скаемые электроны выходят, вообще говоря, во всех мыслимых направлениях. Представим, однако, что все мюоны будут вхо­дить в тормозящий блок А так, что их спины будут повернуты в направлении х. Без магнитного поля там наблюдалось бы какое-то угловое распределение направлений распада; мы же хотим знать, как изменилось бы это распределение при наличии магнитного поля. Можно ожидать, что оно как-то будет меняться со временем. То, что получится, можно узнать, спросив, ка­кой будет в каждый момент амплитуда того, что мюон обнару­жится в состоянии (+x).

Эту задачу можно сформулировать следующим образом: пусть известно, что в момент t=0 спин мюона направлен по +х; какова амплитуда того, что в момент т он окажется в том же состоянии? И хотя мы не знаем правил поведения частицы со спином 1/2 в магнитном поле, перпендикулярном к спину, но зато мы знаем, что бывает с состояниями, когда спины на­правлены вверх или вниз по полю,— тогда их амплитуды ум­ножаются на выражение (5.34). Наша процедура тогда будет состоять в том, чтобы выбрать представление, в котором ба­зисные состояния — это направления спином вверх или спи­ном вниз относительно z (относительно направления поля). И любой вопрос тогда сможет быть выражен через амплитуды этих состояний.

  • Читать дальше
  • 1
  • ...
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: