Вход/Регистрация
Фейнмановские лекции по физике. 8. Квантовая механика I
вернуться

Фейнман Ричард Филлипс

Шрифт:

Фиг. 5.4. Амплитуда для частицы, приближающейся к сильно отталкивающему потенциалу.

Начер­тив график вещественной части амплитуды вероятности, Мы получим зависимость, показанную на фиг. 5.4, б. Волна в области 1 отвечает частице, пытающейся попасть в область 2, но там амплитуда быстро спадает. Имеется какой-то шанс, что ее заметят в области 2, где классически она ни за что бы Не оказалась, но амплитуда этого очень мала (кроме места близ самой границы). Положение вещей очень похоже на то, Что мы обнаружили для полного внутреннего отражения света. Обычно свет не выходит, но его можно все же заметить, если поставить что-нибудь на расстоянии в одну-две длины волны от поверхности.

Вспомните, что если поместить вторую поверхность вплот­ную к границе, где свет полностью отражался, то можно до­биться того, чтобы во втором куске вещества все же распро­странялся какой-то свет. То же самое происходит и с частицами в квантовой механике. Если имеется узкая область с таким высоким потенциалом V, что классическая кинетическая энер­гия там отрицательна, то частица никогда не пройдет сквозь нее. Но в квантовой механике экспоненциально убывающая амплитуда может пробиться сквозь эту область и дать слабую вероятность того, что частицу обнаружат по другую сторону — там, где кинетическая энергия опять положительна. Все это изображено на фиг. 5.5.

Фиг. 5.5. Проникновение амплитуды сквозь потенциальный барьер.

Эффект называется квантовомеханическим «проникновением сквозь барьер».

Проникновение квантовомеханической амплитуды сквозь барьер дает объяснение (или описание) a-распада ядра урана. Кривая зависимости потенциальной энергии a-частицы от рас­стояния от центра показана на фиг. 5.6, а.

Фиг. 5.6. Потенциал a-частицы в ядре урана (а) и качественный вид амплитуды вероятности (б).

Если бы попытаться выстрелить a-частицей с энергией Е в ядро, то она почувство­вала бы электростатическое отталкивание от ядерного заряда z и по классическим канонам не подошла бы к ядру ближе, чем на такое расстояние r1при котором ее полная энергия срав­няется с потенциальной V. Но где-то внутри ядра потенциаль­ная энергия окажется намного ниже из-за сильного притяжения короткодействующих ядерных сил. Как же тогда объяс­нить, отчего при радиоактивном распаде мы обнаруживаем a-частицы, которые, первоначально находясь внутри ядра, оказываются затем снаружи него с энергией Е?Потому что они. с самого начала обладая энергией E, «просочились» сквозь потенциальный барьер. Схематичный набросок амплитуды ве­роятности дан на фиг. 5.6, б, хотя на самом деле экспоненци­альный спад много сильнее, чем показано. Весьма примеча­тельно, что среднее время жизни a-частицы в ядре урана до­стигает 41/2 миллиарда лет, тогда как естественные колебания внутри ядра чрезвычайно быстры, их в секунду бывает 1022! Как же можно из 10– 22 сек получить число порядка 109 лет? Ответ состоит в том, что экспонента дает неслыханно малый множитель порядка 10– 45, что и приводит к очень малой, хоть и вполне определенной, вероятности просачивания. Если уж a-частица попала в ядро, то почти нет никакой амплитуды об­наружить ее не в ядре; если, однако, взять таких ядер побольше и подождать подольше, то вам, может быть, повезет и вы уви­дите, как частица выскочит наружу.

§ 4. Силы; классический предел

Предположим, что частица движется сквозь область, где есть потенциал, меняющийся поперек движения. Классически мы бы описали этот случай так, как показано на фиг. 5.7.

Фиг. 5.7. Отклонение частицы поперечным градиентом потенциала.

Если частица движется в направлении х и вступает в область, где имеется потенциал, изменяющийся вдоль y, то частица полу­чит поперечное ускорение от силы F=-дV/дy. Если сила при­сутствует только в ограниченной области шириной w, то она будет действовать только в течение времени w/v. Частица получит поперечный импульс

p y = Fw/v

Тогда угол отклонения dq будет равен

где р — начальный импульс. Подставляя вместо F число -дV/дy, получаем

Теперь нам предстоит выяснить, удастся ли получить этот результат с помощью представления о том, что волны подчи­няются уравнению (5.20). Мы рассмотрим то же самое явление квантовомеханически, предполагая, что все масштабы в нем намного превосходят длины волн наших амплитуд вероятности. В любой маленькой области можно считать, что амплитуда ме­няется как

В состоянии ли мы увидеть, как отсюда получится отклонение частиц, когда у V будет поперечный градиент? На фиг. 5.8 мы прикинули, как будут выглядеть волны амплитуды вероят­ности.

Фиг. 5.8. Амплитуда вероятности в области с поперечным градиентом потенциала.

Мы начертили ряд «узлов волн», которые вы можете считать, скажем, поверхностями, где фаза амплитуды равна нулю. В любой небольшой области длина волны (расстояние между соседними узлами) равна

где р связано с V формулой

В области, где V больше, там р меньше, а волны длиннее. По­этому направление линий узлов волн постепенно меняется, как показано на рисунке.

Чтобы найти изменение наклона линий узлов волн, заме­тим, что на двух путях а и b имеется разность потенциалов DV=(дV/дy)D, а значит, и разница Dр между импульсами. Эту разность можно получить из (5.28):

  • Читать дальше
  • 1
  • ...
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: