Вход/Регистрация
Фейнмановские лекции по физике. 8. Квантовая механика I
вернуться

Фейнман Ричард Филлипс

Шрифт:

Пусть |y(t)> представляет состояние мюона. Когда он вхо­дит в блок А, его состояние есть |y (0)>, а мы. хотим знать |y (t)> в более позднее время t. Если два базисных состояния обозначить (+z) и (-z), то нам известны амплитуды <+z|y (0)> и <-z|y (0)> — они известны потому, что мы знаем, что |y (0)> представляет собой состояние со спином в направлении (+x). Из предыдущей главы следует, что эти амплитуды равны

Они оказываются одинаковыми. Раз они относятся к положе­нию при t=0, обозначим их С+(0) и С– (0).

Далее, мы знаем, что из этих двух амплитуд получится со временем. Из (5.34) следует

Но если нам известны C+(t) и C– (t), то у нас есть все, чтобы знать условия в момент t. Надо преодолеть только еще одно затруднение: нужна-то нам вероятность того, что спин (в мо­мент t)окажется направленным по +х. Но наши общие пра­вила учитывают и эту задачу. Мы пишем, что амплитуда пре­бывания в состоянии (+x) в момент t [обозначим ее A+(t)]есть

или

Опять пользуясь результатом последней главы (или лучше равенством

* из гл. 3), мы пишем

Итак, в (5.37) все известно. Мы получаем

или

Поразительно простой результат! Заметьте: ответ согласуется с тем, что ожидалось при t=0. Мы получаем А+(0)=1, и это вполне правильно, потому что сперва и было предположено, что при t=0 мюон был в состоянии (+x).

Вероятность Р+того, что мюон окажется в состоянии (+х) в момент t, есть (А+)2, т. е.

Вероятность колеблется от нуля до единицы, как показано на фиг. 5.10.

Фиг. 5.10. Временная зависимость вepoятности того. что частица со спином 1 / 2 окажется в состоянии (+) по отношению оси х.

Заметьте, что вероятность возвращается к единице при mBt/h=p (а не при 2p). Из-за того что косинус возведен в квадрат, вероятность повторяется с частотой 2mВ/h.

Итак, мы обнаружили, что шанс поймать в электронном счетчике, показанном на фиг. 5.9, распадный электрон перио­дически меняется с величиной интервала времени, в течение которого мюон сидел в магнитном поле. Частота зависит от магнитного момента (Л. Именно таким образом и был на самом деле измерен магнитный момент мюона.

Тем же методом, конечно, можно воспользоваться, чтобы ответить на другие вопросы, касающиеся распада мюона. На­пример, как зависит от времени t шанс заметить распадный электрон в направлении у, под 90° к направлению х, но по-прежнему под прямым углом к полю? Если вы решите эту за­дачу, то увидите, что вероятность оказаться в состоянии (+у) меняется как cos2{(mBt/h)-(p/4)}; она колеблется с тем же периодом, но достигает максимума на четверть цикла позже, когда mВt/h=p/4. На самом-то деле происходит вот что: с те­чением времени мюон проходит через последовательность со­стояний, отвечающих полной поляризации в направлении, ко­торое непрерывно вращается вокруг оси z. Это можно описать, говоря, что спин прецессирует с частотой

Вам должно становиться понятно, в какую форму выли­вается квантовомеханическое описание, когда мы описываем поведение чего-либо во времени.

* Если вы пропустили гл. 4, то можете пока просто считать (5.35) невыведенным правилом. Позже, в гл. 8, мы разберем прецессию спина подробнее, будут получены и эти амплитуды.

* Мы предполагаем, что фазы обязаны иметь одно и то же значение в соответствующих точках в двух системах координат. Впрочем, это весьма тонкое место, поскольку в квантовой механике фаза в значитель­ной степени произвольна. Чтобы до конца оправдать это предположение, нужны более детальные рассуждения, учитывающие интерференцию двух или нескольких амплитуд.

 

 

Глава 6

ГАМИЛЬТОНОВА МАТРИЦА

§ 1. Амплитуды и векторы

§ 2. Разложение век­торов состояний

§ 3. Каковы базисные состояния мира?

§ 4. Как состояния меняются во времени

  • Читать дальше
  • 1
  • ...
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: