Шрифт:
А что будет, если масса клина сравнима с массой шара?
Попробуем применить законы сохранения импульса и энергии, считая, что при ударе взаимодействие шара с клином и взаимодействие клина с горизонтальной поверхностью происходят мгновенно и одновременно. По условию между клином и поверхностью, на которой он лежит, трение отсутствует. Поэтому проекция закона сохранения импульса на горизонтальное направление записывается в виде
mv
=
MV
,
(1)
где V - горизонтальная составляющая скорости клина после удара. Для того чтобы записать проекцию закона сохранения импульса на вертикальное направление, нужно учесть, что при ударе клин взаимодействует с поверхностью, т.е. с Землёй:
mv
=
(M+M
з
)V
(2)
В этом выражении V - вертикальная скорость клина и Земли после удара, Mз– масса Земли.
К уравнениям (1) и (2) добавим закон сохранения энергии при упругом ударе:
mv^2
2
=
mv^2
2
+
MV
2
+
(M+Mз)V^2
2
.
(3)
Последним слагаемым в правой части уравнения (3), которое содержит кинетическую энергию Земли, приобретённую в результате удара, можно пренебречь из-за большой массы Земли. Чтобы убедиться в этом, выразим скорость V из уравнения (2) и подставим в (3). Тогда последний член в (3) принимает вид
(M+Mз)V^2
2
=
mv^2
2
+
m
M+Mз
.
(4)
Так как отношение m/(M+Mз)<<1, то, как видно из (4), передаваемая Земле кинетическая энергия пренебрежимо мала.
Выражая теперь горизонтальную скорость клина V из уравнения (1) и подставляя в уравнение (3), в котором отброшен последний член, находим интересующую нас вертикальную скорость шара после удара v:
v^2
=
v^2
M-m
M
.
(5)
Мы получили ответ, который выглядит вполне благополучно: например, он удовлетворяет предельному случаю закреплённого клина (m< Но ведь можно рассуждать и иначе. Решая задачу, мы предположили, что происходит только один удар - удар шара о клин, лежащий на Земле. Между тем в столкновении участвуют три тела: шар, клин и Земля. Можно ли на самом деле считать, что происходит один удар, или необходимо последовательно рассмотреть соударение шара с клином и клина с Землёй?
Рис. 23.2. При упругом ударе средний шар остаётся на месте
Чтобы убедиться в том, что и такое предположение возможно, вспомним пример другого упругого столкновения, в котором также участвуют три тела: на длинных нитях одинаковой длины подвешены три одинаковых костяных шара, соприкасающихся друг с другом. Один из крайних шаров отклоняют на некоторый угол и отпускают (рис. 23.2а). Оказывается, что после удара отскакивает только один шар, висящий с другого края, а средний шар остаётся на месте (рис. 23.2б). Результат этого опыта говорит о том, что происходящее столкновение нельзя рассматривать как один удар отклонённого шара с системой двух неподвижно висящих шаров. Чтобы объяснить опыт, необходимо рассмотреть два последовательно происходящих упругих соударения - отклонённого шара с центральным, а затем центрального шара со вторым крайним.
При упругом лобовом ударе шаров одинаковой массы налетающий шар останавливается, а покоившийся шар приобретает скорость, равную скорости налетавшего шара. Если предположить, что удар происходит мгновенно, то сразу после первого удара центральный шар уже имеет скорость, но ещё не успел сместиться из того положения, в котором находился до удара. В следующий момент происходит удар центрального шара со вторым крайним. В результате этого удара центральный шар останавливается, а крайний шар приобретает такую же скорость, и затем его нить отклоняется от вертикали.
Если же считать, что первый шар сталкивается с системой из двух неподвижных шаров (как бы скреплённых друг с другом), то в результате такого удара эти два шара должны были бы отскочить с одинаковой скоростью. Но на опыте этого не происходит.
Итак, даже если шары висят вплотную друг к другу, их взаимодействие нужно рассматривать как последовательность отдельных соударений друг с другом.
Результат опыта с тремя шарами нельзя, разумеется, безоговорочно переносить на рассматриваемое столкновение шара с клином и плоскостью, так как и условия опыта, и взаимодействующие тела здесь другие. Однако и здесь можно попробовать рассмотреть два последовательных столкновения: шара с клином и клина с Землёй. При этом запись законов сохранения несколько изменится. Уравнение (1), выражающее сохранение горизонтальной составляющей импульса, остаётся без изменения и в том случае, когда мы рассматриваем только первое столкновение - шара с клином. Но уравнение (2) для вертикальной составляющей импульса должно быть заменено другим, так как после первого удара движется только клин, а не клин вместе с Землёй: