Шрифт:
Рис. 53. Изображение симметричного упругого рассеяния в лабораторной системе отсчёта. (Обратите внимание на разную штриховку кадров в лабораторной системе отсчёта и системе отсчёта ракеты!).
Пусть протон A подвергается упругому столкновению с протоном B, первоначально находившимся в покое. Результат такого столкновения невозможно предсказать, так как мы не указали, насколько протоны сблизились при столкновении (а от этого зависит исход). При большинстве столкновений протон A отклонится от первоначального пути лишь на малый угол A, а протон B при этом ощутит лишь слабый толчок в сторону под углом B (относительно направления движения протона A), близким к 90°. Но может произойти и очень тесное сближение протонов, когда почти вся энергия передаётся протону B, и он вылетает под весьма малым углом B к направлению «вперёд» (первоначальному пути A). Промежуточными случаями по отношению к этим двум крайностям являются происходящие время от времени столкновения с «симметричным рассеянием», когда обе (тождественные) частицы разлетаются с одинаковыми скоростями в направлениях, образующих равные углы, A=B=/2, с направлением «вперёд» (рис. 53). Вопрос: чему равен угол отклонения частиц при симметричном рассеянии? Обсуждение. По механике Ньютона полный угол разлёта одинаковых частиц равен 90° при всяком упругом столкновении (будь то симметричное рассеяние или нет!). То, что этот угол при столкновениях быстрых частиц оказывается менее 90°, есть одно из самых интересных и доказательных предсказаний теории относительности. На рис. 54б дана фотография «медленного» столкновения, при котором, в согласии с теорией Ньютона, угол разлёта равен 90°. Напротив, на рис. 54а представлен случай «быстрого» столкновения, при котором угол разлёта частиц явно меньше 90°. Этот факт означает, что отличие угла разлёта от 90° даёт хороший критерий отклонения законов движения от ньютоновских. Рассмотрим, например, такой вопрос: ниже какого значения должна быть скорость частицы в подобном опыте по рассеянию, для того чтобы величина угла разлёта частиц отклонялась от 90° менее чем на ^1/ радиана? Решение этой задачи значительно упрощается, если подойти к случаю описанного выше симметричного рассеяния, выбрав систему отсчёта таким образом, чтобы можно было максимально воспользоваться соображениями симметрии. Сядем для этого в ракету и полетим направо как раз с такой скоростью, которая равна компоненте «вперёд» скорости каждой из частиц после рассеяния. Тогда при наблюдении с этой ракеты частицы A и B не будут испытывать движения в направлении движения ракеты после столкновения. Что же касается боковых компонент скорости частиц A и B (в направлениях вверх и вниз), то заметим, что эти скорости были равны по абсолютной величине и противоположны по направлению в лабораторной системе отсчёта. Но ведь такая симметрия скоростей не может измениться, если мы наблюдаем теперь столкновение с ракеты, летящей вправо. Поэтому и при наблюдении в системе отсчёта ракеты скорости частиц A и B после столкновения будут равны по абсолютной величине и противоположны по знаку. Это тот вывод № 1, которым мы обязаны соображениям симметрии. Вывод № 2 из соображений симметрии также может быть получен при анализе столкновения в системе отсчёта ракеты. Он гласит, что в этой системе до столкновения скорости частиц A и B также были равны по абсолютной величине и противоположны по направлению. Почему? Какое противоречие ожидало бы нас, если бы эти скорости не были равными? — Да просто нарушилась бы сама симметрия, что легко усмотреть из следующего.
Рис. 54а. Сделанная в камере Вильсона фотография релятивистского и почти симметричного рассеяния, когда первоначально один электрон двигался, а другой покоился.
Начальная скорость первого электрона около =0,97. Угол между треками разлетающихся электронов много меньше, чем предсказывавшиеся ньютоновской механикой 90°. Искривление треков электронов как заряженных частиц вызвано присутствием магнитного поля, с помощью которого определялись импульсы электронов.
Рис. 546. Фотография нерелятивистского симметричного упругого рассеяния, когда первоначально один протон двигался, а другой покоился. Начальная скорость первого протона около =0,1. Угол между треками разлетающихся протонов равен 90° в согласии с ньютоновской механикой.
Схема скоростей в системе отсчёта ракеты после столкновения характеризуется симметрией между правым и левым направлениями. Иными словами, глядя на частицы, разлетающиеся после столкновения, невозможно сказать, из каких направлений пришли эти частицы в точку соударения. С равным успехом частица A могла прийти слева, а B — справа, или частица A — справа, а B — слева (например, наблюдатель мог обойти арену и посмотреть с другой стороны). Но ведь участвующие в столкновении частицы тождественны друг другу, и ничего не должно измениться, если их взаимно переименовать.
Рис. 55. Изображение симметричного упругого рассеяния в системе отсчёта ракеты (ср. с рис. 53). Была выбрана скорость ракеты, при которой горизонтальные компоненты скоростей частиц после столкновения равны нулю.
Рис. 56. Так рассеяние изображалось бы в системе отсчёта ракеты, если бы частицы A и B до рассеяния обладали неравными скоростями. (Ошибочное предположение).
Рис. 57. Рисунок 56 (в системе отсчёта ракеты), если его рассматривать на просвет.
Рис. 58. Рисунок 57 (в системе отсчёта ракеты), если поменять местами обозначения A и B для тождественных частиц.
Заметим теперь, что на рис. 56 и 58 мы имеем две разные начальные ситуации, приведшие к одному и тому же исходу (см. рис. 53). Более того, эти начальные ситуации отличаются друг от друга лишь тем, что путём некоторого увеличения скорости ракеты, с которой проводятся наблюдения, ситуация на рис. 56 переходит в ситуацию на рис. 58. Но результат столкновения, начальная ситуация которого изображена на рис. 56, уже не будет сохранять вида результата столкновения, начавшегося, как на рис. 58, если мы так ускорим движение наблюдателя. Значит, в нашем первоначальном предположении, что рис. 56 и рис. 58 различны, содержится противоречие, и, чтобы его избежать, необходимо признать, что в системе отсчёта ракеты частицы A и B имели до столкновения одинаковые скорости, как это и изображено на рис. 55.
Но скорости частиц A и B были попарно равны не только до (и после) столкновения,— величина скорости каждой из них при столкновении вообще не изменилась. Если бы это было не так, то возникла бы следующая трудность. (Третье использование соображений симметрии — теперь уже не симметрии в пространстве, а симметрии во времени!) Снимем кинофильм об этом столкновении частиц, проявим его и отпечатаем, а затем просмотрим в обратном направлении. Если прежде частицы теряли скорость при столкновении, то теперь они будут приобретать её. Такое различие двух направлений течения времени — типичный признак так называемых необратимых процессов, например: 1) переноса тепла от нагретого объекта к охлаждённому; 2) старения живого организма; 3) разбивания яйца или 4) неупругого столкновения. Но ведь мы ограничивались здесь рассмотрением лишь упругих столкновений! Значит, мы должны говорить теперь только о таких процессах, которые являются обратимыми, а обратимость определяется следующим образом:
Обратимым называется такой процесс, в ходе которого оба направления времени невозможно отличить друг от друга, если рассматривать кинохронику этого процесса, пропуская фильм через проектор в любом направлении.
Так как столкновение двух протонов является упругим, все четыре скорости, изображённые на рис. 59, одинаковы.
Рис. 59. Завершение анализа, основанного на соображениях симметрии. В системе отсчёта ракеты, где горизонтальные компоненты скоростей частиц после столкновения равны нулю, абсолютные значения всех скоростей как до, так и после столкновения одинаковы.
Эти выводы весьма просты и ёмки. Всё рассуждение, приводящее к данному заключению, тоже может быть выражено просто и ёмко — тремя словами; «из соображений симметрии». Опираясь подобным образом на соображения симметрии, мы упрощаем исследование громадного множества физических задач.
Пока что наши рассуждения, основывавшиеся на соображениях симметрии, в равной мере относились как к ньютоновской, так и к релятивистской механике. Различия проявляются, когда мы переходим от полностью завершённой диаграммы в системе отсчёта ракеты к исходной диаграмме в лабораторной системе отсчёта. В механике Ньютона сложение скоростей осуществляется по векторному правилу. Поэтому, чтобы найти скорости частиц A и B в лабораторной системе отсчёта после столкновения, нам оставалось лишь добавить к горизонтальной компоненте их скоростей скорость движения ракеты r (см. рис. 60). Тогда очевидно, что угол разлёта частиц в механике Ньютона всегда равен 90° — независимо от их скоростей. Но в теории относительности это не так!