Вход/Регистрация
Пространство, время и движение. Величайшие идеи Вселенной
вернуться

Кэрролл Шон

Шрифт:

Какую же траекторию выбрать? В плоском пространстве не только хорошо понятно, как сохранить направление вектора, но и не важно, каким путем при этом двигаться. В произвольном искривленном пространстве это не так. Мы можем убедиться в этом, если рассмотрим параллельный перенос по двумерной сфере.

Допустим, вектор начинается в какой-то точке на экваторе и направлен на север. Направимся к северному полюсу, сохраняя вектор неподвижным. Это несложно сделать, ведь вектор будет все время направлен по касательной к траектории. Теперь представим себе другой сценарий. Сначала мы пройдем какое-то расстояние вдоль экватора, а затем повернем к полюсу.

Сравнив два принесенных на полюс вектора, мы увидим, что они направлены в разные стороны. А ведь мы так старались держать их, не изменяя направление. Такого бы никогда не случилось на плоскости, на сфере же неизбежно: параллельный перенос вектора по разным траекториям приведет к разным результатам. Но как мы увидим немного позже, этот неудачный опыт позволит нам четко определить, что понимается под словом «кривизна». (Обратите внимание: мы переносим вектор, находясь на сфере, а не глядя на нее из окружающего пространства.)

Мы столкнулись с важной и порой неочевидной особенностью искривленного пространства (или пространства-времени): не существует универсального способа, позволяющего сравнить векторы, находящиеся в разных точках. Мы можем переместить вектор, не изменяя его положения относительно траектории, но результат будет зависеть от нашего выбора: другая траектория может дать совершенно иной результат. Вот почему мы не можем, к примеру, судить о «скоростях» далеких галактик в расширяющейся Вселенной. Да, мы все пытаемся их измерить, однако непроизвольно делаем выбор в пользу какого-то определенного способа сравнения. Это нормально, но мы должны помнить о разнице между тем, что определено четко и точно, а что просто удобно для нас. Примерно о том же мы говорили в главе 6, отправляя близнеца в космос: нужно мыслить локально и сравнивать величины, измеренные в одной и той же точке, а не обманывать себя, пытаясь сопоставить происходящее где-то далеко с тем, что творится рядом с нами.

Геодезические линии

В начале главы 3 мы думали, как провести прямую линию между двумя деревьями. Можно натянуть между ними веревку, а можно просто идти от одного к другому. В обоих случаях мы получим одну и ту же прямую. Все то же самое можно проделать и на любом искривленном многообразии в геометрии Римана, хотя построенная линия вряд ли будет прямой. К примеру, на сфере мы получим большой круг или его дугу.

Линия между двумя точками, при движении по которой мы проходим минимальное расстояние (или затрачиваем максимум собственного времени, если речь идет о пространстве-времени), называется геодезической. Такие линии описываются формулами (см. приложение Б), которые можно вывести примерно так же, как делалось в главе 3 при обсуждении принципа наименьшего действия. Тогда мы говорили о пространстве путей, по которым может пройти частица, связывали с каждым из них какое-то количество действия и находили такой, на котором оно минимально (а производная действия в пространстве путей равна нулю). При поиске геодезических линий мы будем действовать точно так же, но вместо действия будем минимизировать длину кривой.

Геодезическая линия — это не только кратчайший путь: она во всех отношениях ведет себя, как прямая. Например, при движении по ней работает параллельный перенос вектора. Рассмотрим траекторию, которая представляет собой последовательность точек с параметром, позволяющим определить местоположение вдоль нее. Например, мы можем использовать формулу xi(t), где xi — координаты в соответствующем количестве измерений (сколько бы их ни было), а t — параметр, определенный вдоль траектории. (Часто таким параметром действительно служит время, но здесь буква t лишь удобное обозначение.) Тогда можно определить вектор скорости vi = dxi/dt, который направлен по касательной к траектории по ходу движения. Его длина показывает, как быстро мы перемещаемся.

А что значит «сохранять направление движения»? Это когда положение вектора скорости относительно траектории не изменяется, то есть осуществляется параллельный перенос этого вектора. Поэтому можно дать еще одно определение геодезической линии: это путь, при движении по которому вектор скорости остается параллельным начальному вектору скорости. Выходит, что параллельный перенос вектора связан с метрическим тензором: кривые, на которых возможен параллельный перенос, имеют минимальную длину.

Кривизна

Итак, к чему мы пришли? Метрический тензор — самая базовая геометрическая структура многообразия. Он позволяет определять длины траекторий, находить площади и объемы многомерных областей пространства и вычислять скалярные произведения векторов. Он говорит нам, как выполнять параллельный перенос векторов вдоль кривой: мы выяснили, что для этого нужны геодезические линии — кратчайшие пути между точками. Именно параллельный перенос позволит нам сложить последнюю часть головоломки: полностью кривизну пространства.

  • Читать дальше
  • 1
  • ...
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: