Ваховский Евгений Борисович
Шрифт:
22.10. После взятия косинусов от обеих частей уравнения получится иррациональное уравнение, при решении которого возможно приобретение посторонних корней.
22.11. Так как обе части лежат в интервале (-/2, /2), то от обеих частей данного уравнения можно взять тангенсы, что не нарушит равносильности.
22.13. Ясно, что в результате взятия котангенсов от обеих частей равенства мы можем получить посторонние корни, так как у неравных углов могут быть равные котангенсы. Однако возможна и потеря корней, если в интервал изменения углов попадает значение k.
К главе 23
23.6. Способ 1. B тождестве cos (x + T)^2 = cos x^2 удобно выбрать x = 0 и x = 2 T. Вместо второго значения можно выбрать другое иррациональное число.
Способ 2. Если у функции есть период Tr, то x1 + T = xm, x2 + T = xk, где xi– i– й положительный корень функции. Исключив T, получим равенство, которое нужно привести к противоречию.
23.8. Предположить, что функция имеет меньший положительный период, чем наименьшее общее кратное периодов cos 3x/2 и sin x/3. Записать тождество и привести его к противоречию, преобразовав разность синусов и разность косинусов в произведения.
К главе 24
24.1. Получившийся квадратный трехчлен можно разложить на множители. Однако такой прием исследования здесь не подойдет, так как аргумент, от которого зависит квадратный трехчлен, сам является функцией от x. Используйте другой прием для исследования квадратного трехчлена.
Выделите полный квадрат.
24.2. Данную функцию удобно записать в виде разности косинусов, поскольку в аргумент каждого синуса входит 2 x — единственное слагаемое, зависящее от x.
24.3. Для этого вынести sin x cos x за скобки.
24.4. А = x + y + 1.
24.5. Найдя наименьшее значение y в каждом из пяти интервалов, мы сравним эти значения друг с другом.
24.6. Для функции y = x + а/x мы можем неравенство применить непосредственно и написать
x + a/x >= 2a .
Для данной же функции нужно иметь семь слагаемых, содержащих в знаменателе x, чтобы погасить влияние x7. (!!)
Представить a/x в виде суммы семи одинаковых слагаемых a/7x.
24.8. Выразить боковую поверхность как функцию только а + b.
24.9. Удобно ввести угол между диагональю шестиугольника и диагональю квадрата. Этот угол можно будет найти из условия, что диагонали квадрата взаимно перпендикулярны и должны принимать наибольшую возможную величину.
24.10. B условии сказано, что x — действительное число. Следовательно, дискриминант полученного квадратного уравнения не должен быть отрицательным. Это накладывает ограничения на y.
24.11. Чтобы решить систему
удобнее всего найти решение системы уравнений xy = 36 и x + y = 12, где x = ab, y = 5с.
24.12. Данная функция может быть записана в виде
Обратите внимание на второе слагаемое. Когда оно достигает своего минимума?
24.13. Если acrsin x = , acrcos x = , то
^3 + ^3 = ( + )3– 3( + ) = ^3/8– 3/2 .
Минимум функции достигается при > 0 ( не может быть отрицательным), а максимум — при < 0. Если > 0, то появляется возможность применить оценку, в силу которой <= ( + /2)^2.