Ваховский Евгений Борисович
Шрифт:
где
и, следовательно, sin AOB = sin A + B/2 = cos C/2 , то
Аналогично находим SBOC и SCOA и вычисляем искомую площадь:
Выразим теперь через r, А, B и С площадь треугольника А1В1С1. Разобьем и его на три треугольника:
Чтобы найти угол А1ОВ1, рассмотрим четырехугольник А1ОВ1С. B этом четырехугольнике два угла прямых, а потому два других — угол А1ОВ1 и угол С — образуют в сумме развернутый угол, т. е. угол А1ОВ1 равен - С. Аналогично находим углы В1ОС1 и С1ОА1.
Итак,
Остается найти отношение
Ответ. 2 sin A/2 sin B/2 sin C/2 .
1.6. Так как B = 3С, то из соотношения между площадями мы получим
т. е. АС/AB = 2, откуда, в силу теоремы синусов, sin B/sin C = 2. Вспоминая, что по условию B = 3С, придем к тригонометрическому уравнению sin 3С = 2 sin С. Домножим обе части уравнения на cos С, получим sin 3С cos 3С = sin 2С. Преобразовав левую часть в сумму синусов, придем к уравнению
sin 4С + sin 2С = 2 sin 2С, или sin 4С = sin 2С.
Так как C — угол треугольника, меньший 1 (ведь 3C и C — углы одного треугольника), то последнее уравнение может выполняться только в том случае, если
4C = - 2C, т. е. C = /6 .
Находим остальные углы:
B = 3С = /2, A = /3.
Ответ. /3, /6, /2.
1.7. С одной стороны, площадь треугольника CAD (рис. Р.1.7) можно выразить через стороны b, l и угол между ними, а с другой стороны, — как сумму площадей треугольников АВС и ABD:
Приравнивая эти два выражения, найдем l(b - c) cos A/2 = bc sin A,
или
l(b– c) cos A/2 = 2bc sin A/2 cos A/2.
Так как cos A/2 в треугольнике не может быть равен нулю, то на него можно сократить. Теперь найдем l.
Ответ.
1.8. Воспользуемся сравнением площадей. С одной стороны, S = pr = a + b + c/2r, где через а обозначена искомая сторона. Находим отсюда, что 2S = ar + (b + c)r. С другой стороны, если биссектрису угла А обозначить через la, то
S = 1/2 lab sin /2 + 1/2 lac sin /2 = 1/2 la(b + c) sin /2
(рисунок сделайте самостоятельно). Из последнего равенства находим, что
B последнем преобразовании мы учли условие задачи, согласно которому lа = rq. Осталось ввести в рассмотрение радиус R описанной окружности. По условию R = prq. По теореме синусов