Ваховский Евгений Борисович
Шрифт:
Ответ.
3.33. Разность углов А и С равна , BD — биссектриса угла B в треугольнике ABC (рис. P.3.33).
Вычислим угол а:
= B/2 + С = – A – C/2 + С = /2 + C– A/2 = /2 + /2.
Объем призмы равен произведению АА1 на площадь основания ABC, т. е.
АА1 ( 1/2 AD · DB sin + 1/2 DC · DB sin ) = 1/2 АА1 · DB · AC sin = 1/2 aS cos /2.
Ответ. 1/2 aS cos /2.
3.34. Пусть выбраны диагонали С1D и В1С (рис. P.3.34). Так как В1С || А1D и С1D || В1A, то плоскости А1С1D и АВ1С параллельны. Расстояние между В1С и С1D равно расстоянию между этими плоскостями.
Обе плоскости А1С1D и АВ1С перпендикулярны к диагонали BD1. Поэтому искомое расстояние равно разности между отрезком BD1 и удвоенной высотой пирамиды D1А1С1D. Объем этой пирамиды равен a^3/6, а площадь основания А1С1D равна а3/2 , следовательно, высота h = a/3. Так как BD1 = a3, то искомое расстояние равно a3 - 2a/3 = a/3.
Ответ. a/3.
3.35. Из соображений симметрии ясно, что точка O лежит на диагонали AC1 куба. Для доказательства достаточно установить, что плоскость KMN (рис. P.3.35) перпендикулярна к АС1 и что АС1 проходит через точку O1, являющуюся центром треугольника KMN.
По теореме о трех перпендикулярах АС1 BD. Следовательно, АС1 KN. Аналогично прямая АС1 перпендикулярна к KM или MN, т. е. АС1 — перпендикуляр к плоскости KMN.
Треугольник KMN равносторонний. Так как AK = AN = AM, то из равенства соответствующих треугольников, имеющих общие вершины в точках А и О1, получаем KO1 = NO1 = MO1.
Мы доказали, что центр О сферы лежит на продолжении отрезка АС1.
Так как AK — биссектриса в треугольнике OKO1, то
Подставив все эти выражения в пропорцию
6R^2 - 26 aR– 3а^2 = 0.
Геометрический смысл имеет только положительный корень.
Ответ.
3.36. Докажем вначале, что каждая сторона четырехугольника параллельна биссектральной плоскости двугранного угла, образованного данными взаимно перпендикулярными плоскостями. Перенесем сторону четырехугольника параллельно себе так, чтобы одна из ее вершин лежала на ребре этого двугранного угла (рис. P.3.36, а). Полученный отрезок RS спроецируем на плоскости P и Q. Так как проекции при параллельном переносе не изменяются, то RS1 = RS2 = 1. Построим линейный угол S1TS1, измеряющий двугранный угол между плоскостями P и Q, и соединим точки S и T. Треугольники RS1T и RS2T и треугольники RS1S и RS2S попарно равны, т. е. прямоугольные треугольники S1ST и S2ST — равные и равнобедренные. Следовательно, углы STS1 и STS2 равны 45°, а это означает, что сторона данного четырехугольника параллельна биссектральной плоскости. Проведя аналогичные рассуждения для каждой стороны, придем к выводу, что плоскость четырехугольника параллельна биссектральной плоскости.