Шрифт:
Импульс определяется так, чтобы он сохранялся
Требование, чтобы импульс сохранялся во всех системах отсчёта, будет использовано в этой главе трижды, и всякий раз обращение к нему будет производить революцию в нашем понимании природы. В следующем параграфе это требование будет использовано при анализе в двух измерениях лобового упругого столкновения шаров, и в результате мы выведем релятивистское выражение для импульса частицы. В разд. 12 мы выведем релятивистское выражение для энергии частицы, исходя из требования сохранения при столкновении частиц в одномерном случае. В разд. 13 мы применим требование сохранения к случаю неупругого столкновения частиц для того, чтобы вывести закон эквивалентности энергии и массы покоя. Может возникнуть вопрос: как же закон сохранения импульса может представлять какую-либо ценность, если и импульс, и энергия определены именно так, чтобы они сохранялись? Этот вопрос приводит нас к самой сущности физических законов и физической теории 1). Чтобы на него ответить, рассмотрим объект, который, катаясь, подобно бильярдному шару, сталкивается с различными телами. Рассматривая первые столкновения, мы найдём (или определим) с помощью закона сохранения неизвестные импульсы отдельных объектов. Но при последующих столкновениях положение изменится. Ведь мы уже будем знать значения импульса участвующих в этих столкновениях тел! И теперь закон сохранения импульса будет выполняться уже не по определению, а в силу глубинных законов природы. Все физические законы и физические теории обладают именно этим глубоким и тонким свойством, а именно они одновременно и дают нам определение требующихся понятий, и позволяют нам сделать выводы, следующие из их использования. И наоборот, если у нас нет объектов, которыми занимается теория, для которых выводится закон или формулируется принцип, то само их отсутствие лишает нас возможности применять или даже формулировать физические понятия. Как безнадёжно устарел лозунг старой теории: «Не начинай исследования, не сформулировав понятий!». Истинно творческая сущность любого продвижения вперёд в человеческом познании состоит в том, что теория, понятие, закон и метод измерения, навеки неотъемлемые друг от друга, возникают в неразрывном единстве друг с другом.
1) См. Henri Poincar'e, The Foundations of Science, translated by G. B. Halsted, Science Press, Lancaster, Pennsylvania, 1946, p. 310, 333.
Многочисленные примеры подтверждают, что законы сохранения — это не порочный круг утверждений
Таким образом, физика даёт способ установить гармонию в опытных фактах. Для того чтобы установить закон сохранения, недостаточно какого-то одного эксперимента. Их должно быть по меньшей мере два; в первом мы находим определение сохраняющейся величины, а второй проверяет, действительно ли эта величина сохраняется. В этой главе мы займёмся экспериментами первого типа, т.е. необходимыми для формулирования определений величин. Проверка же работы этих определений — процесс, протекающий ежедневно и ежечасно в ходе постоянного развития экспериментальной физики.
В механике Ньютона импульс частицы определяется как произведение массы на скорость. В гл. 1 мы измеряли скорость в метрах расстояния, пройденного за метр светового времени. При таком определении скорости ньютоновское выражение для импульса имеет вид игр. Здесь не утверждается ничего нового об импульсе (и это не релятивистское выражение для импульса!), лишь подчёркивается, что время измеряется в метрах. Но когда время измеряется в метрах, импульс имеет размерность массы. Для того чтобы перейти к обычным единицам (например, кг·м/сек), требуется лишь домножить этот импульс на коэффициент перевода c (скорость света), чтобы перейти от к v, так что
Ньютоновский импульс
в обычных единицах
=
mc
=
mv
.
Импульс и энергию удобнее всего выражать в единицах массы
Подобным же образом в ньютоновской механике кинетическая энергия частицы определяется как произведение массы на квадрат скорости, разделенное на два. Взяв скорость , измеряемую в м/м, получим ньютоновское выражение для кинетической энергии в виде 1/2 m^2. Здесь не утверждается ничего нового об энергии (и это не релятивистское выражение для энергии!), лишь подчеркивается, что время измеряется в метрах. Но когда время измеряется в метрах, энергия имеет размерность массы; и энергия, и импульс обладают одной и той же размерностью. Для того чтобы перейти к обычным единицам (например, джоулям), требуется лишь домножить эту энергию на коэффициент перевода c^2 (квадрат скорости света), чтобы перейти от ^2 к z, так что
Ньютоновская
кинетическая энергия
в обычных единицах
=
1
2
m^2c^2
=
1
2
mv^2
.
Мы будем обозначать импульс (p) и кинетическую энергию (T), выраженные в единицах массы, без дополнительных значков. Итак, в ньютоновском пределе малых скоростей
p
=
m
малые скорости,
размерность массы
.
T
=
1
2
m^2
(67)
При этом мы снабдим обозначения для импульса и энергии в обычных единицах индексом «обычн», подчёркнуто громоздким, чтобы вызвать неприязнь к использованию обычных единиц. Тогда в ньютоновском пределе малых скоростей
p
обычн
=
mv
малые скорости,
обычные единицы
.
T
обычн
=
1
2
mv^2
(68)
В этой главе мы выведем релятивистские выражения для энергии и импульса в единицах массы. Энергия и импульс, выраженные в единицах массы, могут быть просто переведены в величины обычной размерности путём умножения соответственно на c и c^2. Эти результаты подытожены (в обеих системах единиц) на внутренней стороне обложки книги.
11. ИМПУЛЬС
Из соображений симметрии следует, что импульс параллелен скорости
Много ли можно узнать об импульсе, не обращаясь к эксперименту, а просто из сведений, которыми мы располагаем о структуре пространства-времени? В частности, если вообще существует для каждой частицы такая векторная величина, которую мы называем «импульс», причём сумма этих величин для всех частиц при взаимодействиях последних сохраняется, то как должен импульс любой частицы зависеть от её скорости? Так как импульс — величина векторная, нам следует прежде всего выяснить направление этого вектора для данной частицы и уже затем найти зависимость его модуля от её скорости. Начнём с обоснования того, что вектор импульса частицы ориентирован по направлению её движения. Этот вывод можно получить из соображений симметрии — мощного метода физического анализа — следующим образом. В инерциальной системе отсчёта пространство одинаково во всех направлениях, так что мы называем его изотропным. Раз это так, то одним-единственным направлением, связанным с движением прямолинейно летящей частицы, может быть лишь то направление, в котором происходит это движение. Если бы вектор импульса частицы не был направлен в точности по её движению, а составлял, скажем, угол 30° с направлением движения частицы, то существовало бы громадное множество векторов, все повёрнутые на 30° по отношению к направлению движения и совершенно равноправные, каждый из которых мог бы изображать импульс. Но ведь пространство изотропно! Поэтому мы не могли бы предпочесть ни одного из этих векторов остальным. Но, однако, мы предположили, что импульс определяется однозначно как по своему модулю, так и по направлению, если задана скорость. Значит, мы столкнулись с противоречием, от которого можно избавиться, лишь приняв, что вектор импульса должен лежать вдоль направления движения частицы. Но это значит, что можно выбрать его как параллельным, так и антипараллельным этому направлению, и мы произвольно выбираем направление вектора импульса, совпадающее с направлением скорости частицы 1). Итак, можно окончательно сказать, что вектор импульса частицы совпадает по направлению с её скоростью.