Вход/Регистрация
Квантовая хромодинамика: Введение в теорию кварков и глюонов
вернуться

Индурайн Франсиско Хосе

Шрифт:

i

(x)

=

1

d

k

(2)

3/2

2k

0

x

{

e

– ik·x

+

(k,)a

+

(k,) + e

ik·x

–

(k,)a

+

–

(k,)

} ,

где обозначает спиновое состояние, ±– соответствующие волновые функции, а a± и a+±– операторы рождения и уничтожения частиц (+) и античастиц (-). Коммутационные соотношения между операторами (символ [ , ] для фермионов должен интерпретироваться как антикоммутатор) имеют вид

[

a

 

(k,),a

+

(k',')

]

±

±

=

 

2

'

k

0

(

k

–

k'

) ,

 

[

a

 

 ,a

+

]

+

–

=

0 ;

они могут быть использованы для проверки того, что разность между хронологическим и нормальным произведениями операторов

T

0

(x

 

)

0

(x

 

) -

:

0

(x

 

)

0

(x

 

)

:

0

(x

 

)

0

(x

 

)

1

1

2

2

1

1

2

2

1

1

2

2

представляет собой c-число, называемое сверткой. Отсюда видно, что свертка совпадает с вакуумным средним от T-произведения (пропагатором):

0

(x

 

)

0

(x

 

)

 =

0

|

T

0

(x

 

)

0

(x

 

)

|

0

 

T

0

(x

 

)

0

(x

 

)

 

.

1

1

2

2

1

1

2

2

1

1

2

2

0

Повторяя эту процедуру многократно, скажем для выражения (2.1), получим, что хронологическое произведение TL0int…L0int можно записать в виде комбинации сверток, умноженных на нормально упорядоченные произведения операторов. Это утверждение и составляет содержание теоремы Вика. Матричные элементы от этих выражений легко вычисляются, и для каждого члена разложения S - матрицы по теории возмущений получается вполне определенный результат. Фейнмановские правила диаграммной техники автоматически учитывают все упомянутые выше требования и позволяют прямо по соответствующим фейнмановским графикам записать окончательный результат. Правила диаграммной техники для квантовой хромодинамики приведены в приложении Г (см. также § 42, в котором некоторые из них выводятся).

Глава II. КВАНТОВАЯ ХРОМОДИНАМИКА КАК ТЕОРИЯ ПОЛЯ

§ 3. Калибровочная инвариантность

Рассмотрим поля, введенные в гл. I при построении КХД, а именно цветовой триплет кварковых полей q1(х) для кварка каждого аромата и октет глюонов Ва(х). Кварковые поля образуют фундаментальное представление группы SU(3), т.е. если U — унитарная унимодулярная матрица размерности 3x3, то поля qj преобразуются по формуле

U

  • Читать дальше
  • 1
  • ...
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: