Вход/Регистрация
Квантовая хромодинамика: Введение в теорию кварков и глюонов
вернуться

Индурайн Франсиско Хосе

Шрифт:

:

q

j

(x) ->

U

jk

q

k

(x) .

k

Любую матрицу U группы SU(3) можно записать, исходя из восьми генераторов алгебры Ли ta (матрицы ta приведены в приложении В), в виде

U

=

exp

{

– ig

a

t

a

}

,

 

a

где а — параметры группы, а множитель g введен для удобства. Представляя триплет qj в виде трехкомпонентного столбца, получаем следующую формулу преобразования:

q(x) -> e– igata q(x) .

Для полей B рассмотрим присоединенное (размерности 8) представление группы SU(3). Генераторами группы SU(3) на этом представлении будут матрицы Ca, матричные элементы которых имеют вид Cabc = -ifabc (значения констант fabc приведены в приложении В). Поля B преобразуются по формуле

B(x) -> e– gaCaB

Если параметры группы a представляют собой константы, не зависящие от пространственно-временной точки x, то лагранжиан квантовой хромодинамики, выписанный в гл. I, оказывается инвариантным по отношению к глобальным преобразованиям группы SU(3)3a), Однако, как мы знаем из квантовой электродинамики (КЭД), эти преобразования полезно обобщить на случай, когда параметры группы a(x) зависят от пространственно-временной точки x. При этом (локальные) калибровочные преобразования определяются в виде

3a Преобразования называют гпобальными, если определяющие их параметры группы представляют собой константы, независящие от пространственно-временной точки x. — Прим. перев.

q(x)

– >

e

– iga(x)ta

(3.1а)

Аналогично обобщаются обычные преобразования КЭД для калибровочных полей:

B

(x)

– >

e

– iga(x)Ca

B

(x) -

(x)

,

(3.1 б)

или в случае инфинитезимальных преобразований

q

j

(x)

– >

q

j

(x)

–

ig

a

(x)

t

a

jk

q

k

(x),

 

a,k

(3.1 в)

B

(x)->B

(x)+g

f

 

 

(x)B

–

 

(x).

a

a

abc

b

c

 

a

 

b,c

В дальнейшем будет предполагаться инвариантность лагранжиана КХД относительно преобразований (3.1) (в действительности лагранжиан (1.11) обладает этим свойством по построению). Это требование приводит к тому, что поля в лагранжиане появляются в строго определенных комбинациях. Из последующего рассмотрения станет ясно, что лагранжиан (1.11) является фактически наиболее общим лагранжианом, инвариантным по отношению к преобразованиям (3.1) и не содержащим констант размерности массы в отрицательной степени (ср. с § 38 и следующими за ним параграфами).

Рассмотрим, как при калибровочных преобразованиях преобразуются производные от полей, например производная q(x). Из (3.1в) вытекает следующий закон преобразования производной:

q

j

(x)->

q

j

(x)

 

–

ig

t

a

 

(x)

  • Читать дальше
  • 1
  • ...
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: