Вход/Регистрация
Квантовая хромодинамика: Введение в теорию кварков и глюонов
вернуться

Индурайн Франсиско Хосе

Шрифт:

(all)aa'

(5.10)

Проверку унитарности мы оставляем читателю в качестве простого упражнения. Далее в тексте индекс all мы опускаем и рассматриваем лагранжиан КХД, записанный в ковариантной (лоренцевой) калибровке, т.е.

L

=

{

i

q

D

q-m

 

q

q

}

 -

1

(DxB)

2

 -

(B)

q

4

 

2

q

QCD

 

+

(

 

 

)(

 

– gf

 

B

)

 

,

a

ab

 

abc

c

b

=

1-1/

(5.11)

Начиная со следующего раздела, в обозначении лагранжиана L индекс КХД мы также будем опускать.

2. Физические калибровки

Появление духов вызвано тем, что оператор проекции на физические состояния P не коммутирует с лагранжианом КХД, записанным в лоренцевой калибровке. Может оказаться, что такой проблемы не возникнет, если выбрать калибровку, в которой все глюонные состояния соответствуют физическим, так что все гильбертово пространство полей является физическим. Известно, что уже на уровне квантовой электродинамики невозможно одновременно удовлетворить условиям положительной энергии, локальности и явной лоренц-инвариантности. Поэтому возникает необходимость использования нековариантной калибровки. Одной из нековариантных калибровок является кулоновская калибровка8), однако она тоже не свободна от духов. Необходимость введения духов исчезает, если потребовать выполнения соотношений

8 Более того, кулоновская калибровка вносит дополнительные усложнения. Формулировка КХД в кулоновской калибровке изложена в статье [69].

n·B=0,

n

2

<=0.

(5.12)

Случай пространственноподобного вектора n(n2<0) соответствует аксиальным калибровкам9), а случай светоподобного вектора n(n2=0) — светоподобной калибровке10). Так как вектор n является по отношению к задаче внешним его введение нарушает явную лоренц-инвариантность промежуточных вычислений, хотя, конечно, калибровочная инвариантность обеспечивает независимость окончательных результатов для физических величин от вектора n, а следовательно, и их лоренц-инвариантность.

9 Аксиальные калибровки обсуждаются в работе [185]. См. также цитируемую там литературу.

10 См., например, работу [247] и цитируемую там литературу.

Начнем с рассмотрения аксиальной калибровки. Лагранжиан, записанный в аксиальной калибровке, имеет вид

L

 

{

i

q

D

q - m

 

q

q

}

 -

1

(DxB)

2

–

1

(n·B)

2

.

n

q

4

 

2

 

 

q

(5.13)

В дальнейшем по параметру подразумевается предельный переход ->0, так что условие (5.12) представляет собой операторное соотношение, выполненное на всем гильбертовом пространстве. Пропагатор, соответствующий лагранжиану (5.13), записывается в виде

i

– g

– k

k

(n

2

+k

2

)/(k·n)

2

+ (n

k

+n

k

)(n·k)

– 1

;

k

2

+i0

(5.14)

в пределе ->0 он принимает вид

i

– g

– n

2

(k

k

/(k·k)

2

) + (n

k

+n

k

)/(k·n)

.

k

2

+i0

(5.15)

Обобщение теории на аксиальные калибровки нетривиально; детальное изложение этой процедуры заинтересованный читатель найдет в работе [185]. Все вычисления в аксиальных калибровках мы будем проводить только на однопетлевом уровне, на котором трудностей не возникает.

  • Читать дальше
  • 1
  • ...
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: